Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces

The analytical model of the effect of Lorentz forces on enhancing, by 2 orders of magnitude, hydrogen production from water molecules in bulk iron oxide pellets is studied in this paper. This model is verified by experimental data. Dropping water molecules on the surface of an iron oxide pellet resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2023-12, Vol.62 (50), p.21558-21566
Hauptverfasser: Mangiorou, Emmanouela, Ktena, Aphrodite, Musmarra, Dino, Svec, Peter, Xanthakis, John P., Hristoforou, Evangelos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21566
container_issue 50
container_start_page 21558
container_title Industrial & engineering chemistry research
container_volume 62
creator Mangiorou, Emmanouela
Ktena, Aphrodite
Musmarra, Dino
Svec, Peter
Xanthakis, John P.
Hristoforou, Evangelos
description The analytical model of the effect of Lorentz forces on enhancing, by 2 orders of magnitude, hydrogen production from water molecules in bulk iron oxide pellets is studied in this paper. This model is verified by experimental data. Dropping water molecules on the surface of an iron oxide pellet results in releasing oxygen ions, due to the existing dangling bonds at relatively elevated temperatures. These ions can be directed from the surface inward, toward the bulk of the iron oxide, due to Lorentz forces perpendicular to the surface of the magnetic pellet, thus permitting new oxygen ions to be released from water molecules. These Lorentz forces are generated by the interaction between an in-plane magnetic induction of proper orientation and an in-plane applied electric field. The oxygen ion mobilization is enabled due to the substantial amount of oxygen vacancies in the bulk of the iron oxide and is being analytically modeled as a drift-diffusion mechanism, dominated by a Lorentz force-driven drift. This process remains active as long as the paths of oxygen ion mobilization toward the inner part of the iron oxide pellet are active. The same effect should also occur in other nonstoichiometric metal oxides, provided that proper Lorentz forces are applied on the corresponding oxygen ion carriers.
doi_str_mv 10.1021/acs.iecr.3c02671
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_3c02671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a061027396</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-8b6e081707587abd2671ef29df3a843237ebd3b139305ef1f906fc992dba1ff33</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKt7l98DODU_k05mWUv_oNIurC6HTPJFp40TSaagPr0d7OrCvXDhHELuGR0xytmjNmnUoIkjYSgfF-yCDJjkNJM0l5dkQJVSmVRKXpOblPaUUinzfEAOk1b7n64x2sNzsOghOJi1H7o1aGHJYRuDPZquCS24GD7hTXcY4VV_hQhNC09Hf4BVPK2b78YibNF77BLsUtO-wzpEbLtfmIdoMN2SK6d9wrtzDsluPnuZLrP1ZrGaTtaZZiXvMlWPkSpW0EKqQte2p0HHS-uEVrngosDaipqJUlCJjrmSjp0pS25rzZwTYkge_n9PTqp9OMYTYqoYrXpRVV_2oqqzKPEH5hhd6g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces</title><source>ACS Publications</source><creator>Mangiorou, Emmanouela ; Ktena, Aphrodite ; Musmarra, Dino ; Svec, Peter ; Xanthakis, John P. ; Hristoforou, Evangelos</creator><creatorcontrib>Mangiorou, Emmanouela ; Ktena, Aphrodite ; Musmarra, Dino ; Svec, Peter ; Xanthakis, John P. ; Hristoforou, Evangelos</creatorcontrib><description>The analytical model of the effect of Lorentz forces on enhancing, by 2 orders of magnitude, hydrogen production from water molecules in bulk iron oxide pellets is studied in this paper. This model is verified by experimental data. Dropping water molecules on the surface of an iron oxide pellet results in releasing oxygen ions, due to the existing dangling bonds at relatively elevated temperatures. These ions can be directed from the surface inward, toward the bulk of the iron oxide, due to Lorentz forces perpendicular to the surface of the magnetic pellet, thus permitting new oxygen ions to be released from water molecules. These Lorentz forces are generated by the interaction between an in-plane magnetic induction of proper orientation and an in-plane applied electric field. The oxygen ion mobilization is enabled due to the substantial amount of oxygen vacancies in the bulk of the iron oxide and is being analytically modeled as a drift-diffusion mechanism, dominated by a Lorentz force-driven drift. This process remains active as long as the paths of oxygen ion mobilization toward the inner part of the iron oxide pellet are active. The same effect should also occur in other nonstoichiometric metal oxides, provided that proper Lorentz forces are applied on the corresponding oxygen ion carriers.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c02671</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2023-12, Vol.62 (50), p.21558-21566</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0003-3063-9817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c02671$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c02671$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Mangiorou, Emmanouela</creatorcontrib><creatorcontrib>Ktena, Aphrodite</creatorcontrib><creatorcontrib>Musmarra, Dino</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><creatorcontrib>Hristoforou, Evangelos</creatorcontrib><title>Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The analytical model of the effect of Lorentz forces on enhancing, by 2 orders of magnitude, hydrogen production from water molecules in bulk iron oxide pellets is studied in this paper. This model is verified by experimental data. Dropping water molecules on the surface of an iron oxide pellet results in releasing oxygen ions, due to the existing dangling bonds at relatively elevated temperatures. These ions can be directed from the surface inward, toward the bulk of the iron oxide, due to Lorentz forces perpendicular to the surface of the magnetic pellet, thus permitting new oxygen ions to be released from water molecules. These Lorentz forces are generated by the interaction between an in-plane magnetic induction of proper orientation and an in-plane applied electric field. The oxygen ion mobilization is enabled due to the substantial amount of oxygen vacancies in the bulk of the iron oxide and is being analytically modeled as a drift-diffusion mechanism, dominated by a Lorentz force-driven drift. This process remains active as long as the paths of oxygen ion mobilization toward the inner part of the iron oxide pellet are active. The same effect should also occur in other nonstoichiometric metal oxides, provided that proper Lorentz forces are applied on the corresponding oxygen ion carriers.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkM1KAzEYRYMoWKt7l98DODU_k05mWUv_oNIurC6HTPJFp40TSaagPr0d7OrCvXDhHELuGR0xytmjNmnUoIkjYSgfF-yCDJjkNJM0l5dkQJVSmVRKXpOblPaUUinzfEAOk1b7n64x2sNzsOghOJi1H7o1aGHJYRuDPZquCS24GD7hTXcY4VV_hQhNC09Hf4BVPK2b78YibNF77BLsUtO-wzpEbLtfmIdoMN2SK6d9wrtzDsluPnuZLrP1ZrGaTtaZZiXvMlWPkSpW0EKqQte2p0HHS-uEVrngosDaipqJUlCJjrmSjp0pS25rzZwTYkge_n9PTqp9OMYTYqoYrXpRVV_2oqqzKPEH5hhd6g</recordid><startdate>20231220</startdate><enddate>20231220</enddate><creator>Mangiorou, Emmanouela</creator><creator>Ktena, Aphrodite</creator><creator>Musmarra, Dino</creator><creator>Svec, Peter</creator><creator>Xanthakis, John P.</creator><creator>Hristoforou, Evangelos</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0009-0003-3063-9817</orcidid></search><sort><creationdate>20231220</creationdate><title>Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces</title><author>Mangiorou, Emmanouela ; Ktena, Aphrodite ; Musmarra, Dino ; Svec, Peter ; Xanthakis, John P. ; Hristoforou, Evangelos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-8b6e081707587abd2671ef29df3a843237ebd3b139305ef1f906fc992dba1ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangiorou, Emmanouela</creatorcontrib><creatorcontrib>Ktena, Aphrodite</creatorcontrib><creatorcontrib>Musmarra, Dino</creatorcontrib><creatorcontrib>Svec, Peter</creatorcontrib><creatorcontrib>Xanthakis, John P.</creatorcontrib><creatorcontrib>Hristoforou, Evangelos</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangiorou, Emmanouela</au><au>Ktena, Aphrodite</au><au>Musmarra, Dino</au><au>Svec, Peter</au><au>Xanthakis, John P.</au><au>Hristoforou, Evangelos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2023-12-20</date><risdate>2023</risdate><volume>62</volume><issue>50</issue><spage>21558</spage><epage>21566</epage><pages>21558-21566</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The analytical model of the effect of Lorentz forces on enhancing, by 2 orders of magnitude, hydrogen production from water molecules in bulk iron oxide pellets is studied in this paper. This model is verified by experimental data. Dropping water molecules on the surface of an iron oxide pellet results in releasing oxygen ions, due to the existing dangling bonds at relatively elevated temperatures. These ions can be directed from the surface inward, toward the bulk of the iron oxide, due to Lorentz forces perpendicular to the surface of the magnetic pellet, thus permitting new oxygen ions to be released from water molecules. These Lorentz forces are generated by the interaction between an in-plane magnetic induction of proper orientation and an in-plane applied electric field. The oxygen ion mobilization is enabled due to the substantial amount of oxygen vacancies in the bulk of the iron oxide and is being analytically modeled as a drift-diffusion mechanism, dominated by a Lorentz force-driven drift. This process remains active as long as the paths of oxygen ion mobilization toward the inner part of the iron oxide pellet are active. The same effect should also occur in other nonstoichiometric metal oxides, provided that proper Lorentz forces are applied on the corresponding oxygen ion carriers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c02671</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0003-3063-9817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2023-12, Vol.62 (50), p.21558-21566
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_3c02671
source ACS Publications
subjects Kinetics, Catalysis, and Reaction Engineering
title Analytical Model of Enhanced H2 Production from Water Vapor in Bulk Iron Oxide Pellets Using Lorentz Forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Model%20of%20Enhanced%20H2%20Production%20from%20Water%20Vapor%20in%20Bulk%20Iron%20Oxide%20Pellets%20Using%20Lorentz%20Forces&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mangiorou,%20Emmanouela&rft.date=2023-12-20&rft.volume=62&rft.issue=50&rft.spage=21558&rft.epage=21566&rft.pages=21558-21566&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c02671&rft_dat=%3Cacs%3Ea061027396%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true