Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries

The NASICON-type inorganic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) is an ideal solid electrolyte material for solid-state batteries due to its remarkable lithium-ion conductivity, wide electrochemical window, and superb environmental stability. However, its poor contact with electrodes and incompat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-10, Vol.61 (40), p.14891-14897
Hauptverfasser: Wang, Dan, Zheng, Fei, Song, Zhengpeng, Li, Haotong, Yu, Yingchun, Tao, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14897
container_issue 40
container_start_page 14891
container_title Industrial & engineering chemistry research
container_volume 61
creator Wang, Dan
Zheng, Fei
Song, Zhengpeng
Li, Haotong
Yu, Yingchun
Tao, Xia
description The NASICON-type inorganic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) is an ideal solid electrolyte material for solid-state batteries due to its remarkable lithium-ion conductivity, wide electrochemical window, and superb environmental stability. However, its poor contact with electrodes and incompatibility with lithium (Li) anodes cause high interfacial impedance or even electrolyte deactivation. To address these issues, a double-side-modified LATP ceramic pellet with a flexible polyvinylidene fluoride (PVDF) polymer electrolyte capable of promoting LATP/electrode interfacial contact and synchronously modifying LATP/Li interfacial compatibility is constructed. The results demonstrate that the introduction of the PVDF buffer layers effectively reduces the interface impedance (5789 Ω → 271 Ω), prevents the occurrence of unwanted reactions of Li anode and LATP, and thus ensures the stable operation of the battery. The Li/Li cell fabricated by PVDF-modified LATP ceramic pellet exhibits over 3000 h of stable dendrite-free cycling at 0.1 mA cm–2 and small polarization (30 mV). This solid-state LiFePO4/Li battery exhibits a capacity retention of 83.4% after 300 cycles, implying its good cycling stability. This study indicates that such an interfacial modification strategy is effective for anodic protection and contributes to the formation of stable solid-state batteries.
doi_str_mv 10.1021/acs.iecr.2c02575
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_2c02575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c173158697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-1096ba7288d19b7327fb5448ae3fe2005bf00041f911c25630a3280bb175827e3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKt3jzkqmDV_Nt302NZWhUoLrecluzvBlLiBJKv0u_hhTdHTPOYxb3g_hG4ZLRjl7FG3sbDQhoK3lMtKnqERk5wSSUt5jkZUKUWkUvISXcV4oJRKWZYj9LPwfUxhaJP1PfYGb707ftn-6GwHPeCVG3zIEs8HYyDgtT5CiNj4LC0rxMzRQuyzqu62m_Je4J3Pl2SXdAK8dNCmkAMTRJz8tw4dzk7jAD9B3wWbgKwCQI5KH3b4xG-QtMNznRIEC_EaXRjtItz8zzF6Xy33ixey3jy_LmZrohnniTA6nTS64kp1bNpUglemyeWUBmGA56aNyX1LZqaMtVxOBNWCK9o0rJKKVyDG6OEvN0OsD34Iff5WM1qfyNan5Yls_U9W_AJ5kG3r</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries</title><source>American Chemical Society Publications</source><creator>Wang, Dan ; Zheng, Fei ; Song, Zhengpeng ; Li, Haotong ; Yu, Yingchun ; Tao, Xia</creator><creatorcontrib>Wang, Dan ; Zheng, Fei ; Song, Zhengpeng ; Li, Haotong ; Yu, Yingchun ; Tao, Xia</creatorcontrib><description>The NASICON-type inorganic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) is an ideal solid electrolyte material for solid-state batteries due to its remarkable lithium-ion conductivity, wide electrochemical window, and superb environmental stability. However, its poor contact with electrodes and incompatibility with lithium (Li) anodes cause high interfacial impedance or even electrolyte deactivation. To address these issues, a double-side-modified LATP ceramic pellet with a flexible polyvinylidene fluoride (PVDF) polymer electrolyte capable of promoting LATP/electrode interfacial contact and synchronously modifying LATP/Li interfacial compatibility is constructed. The results demonstrate that the introduction of the PVDF buffer layers effectively reduces the interface impedance (5789 Ω → 271 Ω), prevents the occurrence of unwanted reactions of Li anode and LATP, and thus ensures the stable operation of the battery. The Li/Li cell fabricated by PVDF-modified LATP ceramic pellet exhibits over 3000 h of stable dendrite-free cycling at 0.1 mA cm–2 and small polarization (30 mV). This solid-state LiFePO4/Li battery exhibits a capacity retention of 83.4% after 300 cycles, implying its good cycling stability. This study indicates that such an interfacial modification strategy is effective for anodic protection and contributes to the formation of stable solid-state batteries.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c02575</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Materials and Interfaces</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-10, Vol.61 (40), p.14891-14897</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8466-1196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c02575$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c02575$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Song, Zhengpeng</creatorcontrib><creatorcontrib>Li, Haotong</creatorcontrib><creatorcontrib>Yu, Yingchun</creatorcontrib><creatorcontrib>Tao, Xia</creatorcontrib><title>Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The NASICON-type inorganic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) is an ideal solid electrolyte material for solid-state batteries due to its remarkable lithium-ion conductivity, wide electrochemical window, and superb environmental stability. However, its poor contact with electrodes and incompatibility with lithium (Li) anodes cause high interfacial impedance or even electrolyte deactivation. To address these issues, a double-side-modified LATP ceramic pellet with a flexible polyvinylidene fluoride (PVDF) polymer electrolyte capable of promoting LATP/electrode interfacial contact and synchronously modifying LATP/Li interfacial compatibility is constructed. The results demonstrate that the introduction of the PVDF buffer layers effectively reduces the interface impedance (5789 Ω → 271 Ω), prevents the occurrence of unwanted reactions of Li anode and LATP, and thus ensures the stable operation of the battery. The Li/Li cell fabricated by PVDF-modified LATP ceramic pellet exhibits over 3000 h of stable dendrite-free cycling at 0.1 mA cm–2 and small polarization (30 mV). This solid-state LiFePO4/Li battery exhibits a capacity retention of 83.4% after 300 cycles, implying its good cycling stability. This study indicates that such an interfacial modification strategy is effective for anodic protection and contributes to the formation of stable solid-state batteries.</description><subject>Materials and Interfaces</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE9LAzEQxYMoWKt3jzkqmDV_Nt302NZWhUoLrecluzvBlLiBJKv0u_hhTdHTPOYxb3g_hG4ZLRjl7FG3sbDQhoK3lMtKnqERk5wSSUt5jkZUKUWkUvISXcV4oJRKWZYj9LPwfUxhaJP1PfYGb707ftn-6GwHPeCVG3zIEs8HYyDgtT5CiNj4LC0rxMzRQuyzqu62m_Je4J3Pl2SXdAK8dNCmkAMTRJz8tw4dzk7jAD9B3wWbgKwCQI5KH3b4xG-QtMNznRIEC_EaXRjtItz8zzF6Xy33ixey3jy_LmZrohnniTA6nTS64kp1bNpUglemyeWUBmGA56aNyX1LZqaMtVxOBNWCK9o0rJKKVyDG6OEvN0OsD34Iff5WM1qfyNan5Yls_U9W_AJ5kG3r</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Wang, Dan</creator><creator>Zheng, Fei</creator><creator>Song, Zhengpeng</creator><creator>Li, Haotong</creator><creator>Yu, Yingchun</creator><creator>Tao, Xia</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8466-1196</orcidid></search><sort><creationdate>20221012</creationdate><title>Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries</title><author>Wang, Dan ; Zheng, Fei ; Song, Zhengpeng ; Li, Haotong ; Yu, Yingchun ; Tao, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-1096ba7288d19b7327fb5448ae3fe2005bf00041f911c25630a3280bb175827e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dan</creatorcontrib><creatorcontrib>Zheng, Fei</creatorcontrib><creatorcontrib>Song, Zhengpeng</creatorcontrib><creatorcontrib>Li, Haotong</creatorcontrib><creatorcontrib>Yu, Yingchun</creatorcontrib><creatorcontrib>Tao, Xia</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dan</au><au>Zheng, Fei</au><au>Song, Zhengpeng</au><au>Li, Haotong</au><au>Yu, Yingchun</au><au>Tao, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-10-12</date><risdate>2022</risdate><volume>61</volume><issue>40</issue><spage>14891</spage><epage>14897</epage><pages>14891-14897</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The NASICON-type inorganic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) is an ideal solid electrolyte material for solid-state batteries due to its remarkable lithium-ion conductivity, wide electrochemical window, and superb environmental stability. However, its poor contact with electrodes and incompatibility with lithium (Li) anodes cause high interfacial impedance or even electrolyte deactivation. To address these issues, a double-side-modified LATP ceramic pellet with a flexible polyvinylidene fluoride (PVDF) polymer electrolyte capable of promoting LATP/electrode interfacial contact and synchronously modifying LATP/Li interfacial compatibility is constructed. The results demonstrate that the introduction of the PVDF buffer layers effectively reduces the interface impedance (5789 Ω → 271 Ω), prevents the occurrence of unwanted reactions of Li anode and LATP, and thus ensures the stable operation of the battery. The Li/Li cell fabricated by PVDF-modified LATP ceramic pellet exhibits over 3000 h of stable dendrite-free cycling at 0.1 mA cm–2 and small polarization (30 mV). This solid-state LiFePO4/Li battery exhibits a capacity retention of 83.4% after 300 cycles, implying its good cycling stability. This study indicates that such an interfacial modification strategy is effective for anodic protection and contributes to the formation of stable solid-state batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c02575</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8466-1196</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-10, Vol.61 (40), p.14891-14897
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_2c02575
source American Chemical Society Publications
subjects Materials and Interfaces
title Construction of Polyvinylidene Fluoride Buffer Layers for Li1.3Al0.3Ti1.7(PO4)3 Solid-State Electrolytes toward Stable Dendrite-Free Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Polyvinylidene%20Fluoride%20Buffer%20Layers%20for%20Li1.3Al0.3Ti1.7(PO4)3%20Solid-State%20Electrolytes%20toward%20Stable%20Dendrite-Free%20Lithium%20Metal%20Batteries&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Wang,%20Dan&rft.date=2022-10-12&rft.volume=61&rft.issue=40&rft.spage=14891&rft.epage=14897&rft.pages=14891-14897&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c02575&rft_dat=%3Cacs%3Ec173158697%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true