Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches

The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorben...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-08, Vol.61 (30), p.10670-10688
Hauptverfasser: Rahimi, Mohammad, Abbaspour-Fard, Mohammad Hossein, Rohani, Abbas, Yuksel Orhan, Ozge, Li, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10688
container_issue 30
container_start_page 10670
container_title Industrial & engineering chemistry research
container_volume 61
creator Rahimi, Mohammad
Abbaspour-Fard, Mohammad Hossein
Rohani, Abbas
Yuksel Orhan, Ozge
Li, Xiang
description The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of
doi_str_mv 10.1021/acs.iecr.2c01887
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_2c01887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d28252154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-28de72758cd59df3d9292e79e5b1b60541d92ac46d59ce8eef8b20c4e42cbf763</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRC0EEqVw5-gPIK3t2o3DraQtILXkUs6RY2-oq2BHTsIB8fE4opx2d3Y0Iz2E7imZUcLoXOluZkGHGdOESpleoAkVjCSCcHGJJkRKmQgpxTW66boTIUQIzifoZ-8NNNZ9YOUMLtreftrv8XybF8nGBauPYPCT9ckagv2K-8p0PlTg-g7XPuC8YDhXbT8EeMR7pY_WAd6BCu4_dL09REejh0b11ju8atvgoxG6W3RVq6aDu_Ocovft5pC_JLvi-TVf7RJFGesTJg2kLBVSG5GZemEyljFIMxAVrZZEcBoVpfkyvjVIgFpWjGgOnOmqTpeLKXr4y42QypMfgottJSXlSK4cxZFceSa3-AUMGGQe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches</title><source>ACS Publications</source><creator>Rahimi, Mohammad ; Abbaspour-Fard, Mohammad Hossein ; Rohani, Abbas ; Yuksel Orhan, Ozge ; Li, Xiang</creator><creatorcontrib>Rahimi, Mohammad ; Abbaspour-Fard, Mohammad Hossein ; Rohani, Abbas ; Yuksel Orhan, Ozge ; Li, Xiang</creatorcontrib><description>The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of &lt;3.5%. RBF-NN estimates the CO2 capture with an R 2 range of 0.97–0.99 of BACs as solid adsorbents. Also, the generalization assessment of RBF-NN observed errors, tolerating 0.5–6% of MAPE in 50–80% of total data sets. An alternative survey sensitivity analysis discloses the importance of multiple features such as specific surface area (SSA), micropore volume (%V mic), average pore diameter (AVD), and nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional groups. A genetic algorithm (GA) optimized the physiochemical properties of N-doped ACs. It proposed the optimal CO2 capture with a value of 9.2 mmol g–1 at 1 bar and 273 K. The GA coupled with density functional theory (DFT) to optimize the geometries of exemplified BACs and adsorption energies with CO2 molecules.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c01887</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Applied Chemistry</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-08, Vol.61 (30), p.10670-10688</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9562-1445 ; 0000-0003-0135-0363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c01887$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c01887$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rahimi, Mohammad</creatorcontrib><creatorcontrib>Abbaspour-Fard, Mohammad Hossein</creatorcontrib><creatorcontrib>Rohani, Abbas</creatorcontrib><creatorcontrib>Yuksel Orhan, Ozge</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><title>Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of &lt;3.5%. RBF-NN estimates the CO2 capture with an R 2 range of 0.97–0.99 of BACs as solid adsorbents. Also, the generalization assessment of RBF-NN observed errors, tolerating 0.5–6% of MAPE in 50–80% of total data sets. An alternative survey sensitivity analysis discloses the importance of multiple features such as specific surface area (SSA), micropore volume (%V mic), average pore diameter (AVD), and nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional groups. A genetic algorithm (GA) optimized the physiochemical properties of N-doped ACs. It proposed the optimal CO2 capture with a value of 9.2 mmol g–1 at 1 bar and 273 K. The GA coupled with density functional theory (DFT) to optimize the geometries of exemplified BACs and adsorption energies with CO2 molecules.</description><subject>Applied Chemistry</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo1kMFOwzAQRC0EEqVw5-gPIK3t2o3DraQtILXkUs6RY2-oq2BHTsIB8fE4opx2d3Y0Iz2E7imZUcLoXOluZkGHGdOESpleoAkVjCSCcHGJJkRKmQgpxTW66boTIUQIzifoZ-8NNNZ9YOUMLtreftrv8XybF8nGBauPYPCT9ckagv2K-8p0PlTg-g7XPuC8YDhXbT8EeMR7pY_WAd6BCu4_dL09REejh0b11ju8atvgoxG6W3RVq6aDu_Ocovft5pC_JLvi-TVf7RJFGesTJg2kLBVSG5GZemEyljFIMxAVrZZEcBoVpfkyvjVIgFpWjGgOnOmqTpeLKXr4y42QypMfgottJSXlSK4cxZFceSa3-AUMGGQe</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Rahimi, Mohammad</creator><creator>Abbaspour-Fard, Mohammad Hossein</creator><creator>Rohani, Abbas</creator><creator>Yuksel Orhan, Ozge</creator><creator>Li, Xiang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9562-1445</orcidid><orcidid>https://orcid.org/0000-0003-0135-0363</orcidid></search><sort><creationdate>20220803</creationdate><title>Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches</title><author>Rahimi, Mohammad ; Abbaspour-Fard, Mohammad Hossein ; Rohani, Abbas ; Yuksel Orhan, Ozge ; Li, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-28de72758cd59df3d9292e79e5b1b60541d92ac46d59ce8eef8b20c4e42cbf763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimi, Mohammad</creatorcontrib><creatorcontrib>Abbaspour-Fard, Mohammad Hossein</creatorcontrib><creatorcontrib>Rohani, Abbas</creatorcontrib><creatorcontrib>Yuksel Orhan, Ozge</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimi, Mohammad</au><au>Abbaspour-Fard, Mohammad Hossein</au><au>Rohani, Abbas</au><au>Yuksel Orhan, Ozge</au><au>Li, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-08-03</date><risdate>2022</risdate><volume>61</volume><issue>30</issue><spage>10670</spage><epage>10688</epage><pages>10670-10688</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The CO2 emission issue has triggered the promotion of carbon capture and storage (CCS), particularly bio-route CCS as a sustainable procedure to capture CO2 using biomass-based activated carbon (BAC). The well-known multi-nitrogen functional groups and microstructure features of N-doped BAC adsorbents can synergistically promote CO2 physisorption. Here, machine learning (ML) modeling was applied to the various physicochemical features of N-doped BAC as a challenge to figure out the unrevealed mechanism of CO2 capture. A radial basis function neural network (RBF-NN) was employed to estimate the in operando efficiency of microstructural and N-functionality groups at six conditions of pressures ranging from 0.15 to 1 bar at room and cryogenic temperatures. A diverse training algorithm was applied, in which trainbr illustrated the lowest mean absolute percent error (MAPE) of &lt;3.5%. RBF-NN estimates the CO2 capture with an R 2 range of 0.97–0.99 of BACs as solid adsorbents. Also, the generalization assessment of RBF-NN observed errors, tolerating 0.5–6% of MAPE in 50–80% of total data sets. An alternative survey sensitivity analysis discloses the importance of multiple features such as specific surface area (SSA), micropore volume (%V mic), average pore diameter (AVD), and nitrogen content (N%), oxidized-N, and graphitic-N as nitrogen functional groups. A genetic algorithm (GA) optimized the physiochemical properties of N-doped ACs. It proposed the optimal CO2 capture with a value of 9.2 mmol g–1 at 1 bar and 273 K. The GA coupled with density functional theory (DFT) to optimize the geometries of exemplified BACs and adsorption energies with CO2 molecules.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c01887</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9562-1445</orcidid><orcidid>https://orcid.org/0000-0003-0135-0363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-08, Vol.61 (30), p.10670-10688
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_2c01887
source ACS Publications
subjects Applied Chemistry
title Modeling and Optimizing N/O-Enriched Bio-Derived Adsorbents for CO2 Capture: Machine Learning and DFT Calculation Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Optimizing%20N/O-Enriched%20Bio-Derived%20Adsorbents%20for%20CO2%20Capture:%20Machine%20Learning%20and%20DFT%20Calculation%20Approaches&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Rahimi,%20Mohammad&rft.date=2022-08-03&rft.volume=61&rft.issue=30&rft.spage=10670&rft.epage=10688&rft.pages=10670-10688&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c01887&rft_dat=%3Cacs%3Ed28252154%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true