Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets

The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the micropo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-07, Vol.61 (27), p.9785-9794
Hauptverfasser: Luo, Linfeng, Zhang, Weijie, Song, Ce, Tang, Juntao, Hu, Fangyuan, Pan, Jian, Zhang, Yuanbo, Pan, Chunyue, Yu, Guipeng, Jian, Xigao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9794
container_issue 27
container_start_page 9785
container_title Industrial & engineering chemistry research
container_volume 61
creator Luo, Linfeng
Zhang, Weijie
Song, Ce
Tang, Juntao
Hu, Fangyuan
Pan, Jian
Zhang, Yuanbo
Pan, Chunyue
Yu, Guipeng
Jian, Xigao
description The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.
doi_str_mv 10.1021/acs.iecr.2c00548
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_2c00548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c92095868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-9a3d740c0b9108b434d11ff279323f7d4a93ce5e02672282ffdbc6d50739d7f83</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqGwZ-kPIOX6VTtLGiggCl0A68jxo3WF4shOxO-TiK5GGo1mNAehWwJLApTca5OXwZm0pAZAcHWGCiIolAK4OEcFKKVKoZS4RFc5H2HKCM4L9LaOMQ-h2-PPHcW17ocxOfwbhkPo8EcYUty7rnyMvbP4PZgU-5jimPE6RKNTG6eQ7mI-ODfka3Th9U92NyddoO_N01f9Um53z6_1w7bUhNKhrDSzkoOBtiKgWs64JcR7KitGmZeW64oZJxzQlaRUUe9ta1ZWgGSVlV6xBbr7750-N8c4pm5aawg0M4hmNmcQzQkE-wPxDVMF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><source>ACS Publications</source><creator>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</creator><creatorcontrib>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</creatorcontrib><description>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c00548</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Separations</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-07, Vol.61 (27), p.9785-9794</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2061-2907 ; 0000-0002-1611-7372 ; 0000-0001-8712-0512 ; 0000-0002-7398-3605 ; 0000-0003-3346-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c00548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c00548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Luo, Linfeng</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Song, Ce</creatorcontrib><creatorcontrib>Tang, Juntao</creatorcontrib><creatorcontrib>Hu, Fangyuan</creatorcontrib><creatorcontrib>Pan, Jian</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><creatorcontrib>Yu, Guipeng</creatorcontrib><creatorcontrib>Jian, Xigao</creatorcontrib><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</description><subject>Separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkMtOwzAURC0EEqGwZ-kPIOX6VTtLGiggCl0A68jxo3WF4shOxO-TiK5GGo1mNAehWwJLApTca5OXwZm0pAZAcHWGCiIolAK4OEcFKKVKoZS4RFc5H2HKCM4L9LaOMQ-h2-PPHcW17ocxOfwbhkPo8EcYUty7rnyMvbP4PZgU-5jimPE6RKNTG6eQ7mI-ODfka3Th9U92NyddoO_N01f9Um53z6_1w7bUhNKhrDSzkoOBtiKgWs64JcR7KitGmZeW64oZJxzQlaRUUe9ta1ZWgGSVlV6xBbr7750-N8c4pm5aawg0M4hmNmcQzQkE-wPxDVMF</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Luo, Linfeng</creator><creator>Zhang, Weijie</creator><creator>Song, Ce</creator><creator>Tang, Juntao</creator><creator>Hu, Fangyuan</creator><creator>Pan, Jian</creator><creator>Zhang, Yuanbo</creator><creator>Pan, Chunyue</creator><creator>Yu, Guipeng</creator><creator>Jian, Xigao</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2061-2907</orcidid><orcidid>https://orcid.org/0000-0002-1611-7372</orcidid><orcidid>https://orcid.org/0000-0001-8712-0512</orcidid><orcidid>https://orcid.org/0000-0002-7398-3605</orcidid><orcidid>https://orcid.org/0000-0003-3346-6627</orcidid></search><sort><creationdate>20220713</creationdate><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><author>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-9a3d740c0b9108b434d11ff279323f7d4a93ce5e02672282ffdbc6d50739d7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Linfeng</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Song, Ce</creatorcontrib><creatorcontrib>Tang, Juntao</creatorcontrib><creatorcontrib>Hu, Fangyuan</creatorcontrib><creatorcontrib>Pan, Jian</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><creatorcontrib>Yu, Guipeng</creatorcontrib><creatorcontrib>Jian, Xigao</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Linfeng</au><au>Zhang, Weijie</au><au>Song, Ce</au><au>Tang, Juntao</au><au>Hu, Fangyuan</au><au>Pan, Jian</au><au>Zhang, Yuanbo</au><au>Pan, Chunyue</au><au>Yu, Guipeng</au><au>Jian, Xigao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-07-13</date><risdate>2022</risdate><volume>61</volume><issue>27</issue><spage>9785</spage><epage>9794</epage><pages>9785-9794</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c00548</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2061-2907</orcidid><orcidid>https://orcid.org/0000-0002-1611-7372</orcidid><orcidid>https://orcid.org/0000-0001-8712-0512</orcidid><orcidid>https://orcid.org/0000-0002-7398-3605</orcidid><orcidid>https://orcid.org/0000-0003-3346-6627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-07, Vol.61 (27), p.9785-9794
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_2c00548
source ACS Publications
subjects Separations
title Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20SO2%20Capture%20within%20Nitrogen-Doped%20Microporous%20Biocarbon%20Nanosheets&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Luo,%20Linfeng&rft.date=2022-07-13&rft.volume=61&rft.issue=27&rft.spage=9785&rft.epage=9794&rft.pages=9785-9794&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c00548&rft_dat=%3Cacs%3Ec92095868%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true