Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets
The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the micropo...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2022-07, Vol.61 (27), p.9785-9794 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9794 |
---|---|
container_issue | 27 |
container_start_page | 9785 |
container_title | Industrial & engineering chemistry research |
container_volume | 61 |
creator | Luo, Linfeng Zhang, Weijie Song, Ce Tang, Juntao Hu, Fangyuan Pan, Jian Zhang, Yuanbo Pan, Chunyue Yu, Guipeng Jian, Xigao |
description | The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes. |
doi_str_mv | 10.1021/acs.iecr.2c00548 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_2c00548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c92095868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-9a3d740c0b9108b434d11ff279323f7d4a93ce5e02672282ffdbc6d50739d7f83</originalsourceid><addsrcrecordid>eNotkMtOwzAURC0EEqGwZ-kPIOX6VTtLGiggCl0A68jxo3WF4shOxO-TiK5GGo1mNAehWwJLApTca5OXwZm0pAZAcHWGCiIolAK4OEcFKKVKoZS4RFc5H2HKCM4L9LaOMQ-h2-PPHcW17ocxOfwbhkPo8EcYUty7rnyMvbP4PZgU-5jimPE6RKNTG6eQ7mI-ODfka3Th9U92NyddoO_N01f9Um53z6_1w7bUhNKhrDSzkoOBtiKgWs64JcR7KitGmZeW64oZJxzQlaRUUe9ta1ZWgGSVlV6xBbr7750-N8c4pm5aawg0M4hmNmcQzQkE-wPxDVMF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><source>ACS Publications</source><creator>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</creator><creatorcontrib>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</creatorcontrib><description>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c00548</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Separations</subject><ispartof>Industrial & engineering chemistry research, 2022-07, Vol.61 (27), p.9785-9794</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2061-2907 ; 0000-0002-1611-7372 ; 0000-0001-8712-0512 ; 0000-0002-7398-3605 ; 0000-0003-3346-6627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c00548$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c00548$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Luo, Linfeng</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Song, Ce</creatorcontrib><creatorcontrib>Tang, Juntao</creatorcontrib><creatorcontrib>Hu, Fangyuan</creatorcontrib><creatorcontrib>Pan, Jian</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><creatorcontrib>Yu, Guipeng</creatorcontrib><creatorcontrib>Jian, Xigao</creatorcontrib><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</description><subject>Separations</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkMtOwzAURC0EEqGwZ-kPIOX6VTtLGiggCl0A68jxo3WF4shOxO-TiK5GGo1mNAehWwJLApTca5OXwZm0pAZAcHWGCiIolAK4OEcFKKVKoZS4RFc5H2HKCM4L9LaOMQ-h2-PPHcW17ocxOfwbhkPo8EcYUty7rnyMvbP4PZgU-5jimPE6RKNTG6eQ7mI-ODfka3Th9U92NyddoO_N01f9Um53z6_1w7bUhNKhrDSzkoOBtiKgWs64JcR7KitGmZeW64oZJxzQlaRUUe9ta1ZWgGSVlV6xBbr7750-N8c4pm5aawg0M4hmNmcQzQkE-wPxDVMF</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Luo, Linfeng</creator><creator>Zhang, Weijie</creator><creator>Song, Ce</creator><creator>Tang, Juntao</creator><creator>Hu, Fangyuan</creator><creator>Pan, Jian</creator><creator>Zhang, Yuanbo</creator><creator>Pan, Chunyue</creator><creator>Yu, Guipeng</creator><creator>Jian, Xigao</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2061-2907</orcidid><orcidid>https://orcid.org/0000-0002-1611-7372</orcidid><orcidid>https://orcid.org/0000-0001-8712-0512</orcidid><orcidid>https://orcid.org/0000-0002-7398-3605</orcidid><orcidid>https://orcid.org/0000-0003-3346-6627</orcidid></search><sort><creationdate>20220713</creationdate><title>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</title><author>Luo, Linfeng ; Zhang, Weijie ; Song, Ce ; Tang, Juntao ; Hu, Fangyuan ; Pan, Jian ; Zhang, Yuanbo ; Pan, Chunyue ; Yu, Guipeng ; Jian, Xigao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-9a3d740c0b9108b434d11ff279323f7d4a93ce5e02672282ffdbc6d50739d7f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Separations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Linfeng</creatorcontrib><creatorcontrib>Zhang, Weijie</creatorcontrib><creatorcontrib>Song, Ce</creatorcontrib><creatorcontrib>Tang, Juntao</creatorcontrib><creatorcontrib>Hu, Fangyuan</creatorcontrib><creatorcontrib>Pan, Jian</creatorcontrib><creatorcontrib>Zhang, Yuanbo</creatorcontrib><creatorcontrib>Pan, Chunyue</creatorcontrib><creatorcontrib>Yu, Guipeng</creatorcontrib><creatorcontrib>Jian, Xigao</creatorcontrib><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Linfeng</au><au>Zhang, Weijie</au><au>Song, Ce</au><au>Tang, Juntao</au><au>Hu, Fangyuan</au><au>Pan, Jian</au><au>Zhang, Yuanbo</au><au>Pan, Chunyue</au><au>Yu, Guipeng</au><au>Jian, Xigao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-07-13</date><risdate>2022</risdate><volume>61</volume><issue>27</issue><spage>9785</spage><epage>9794</epage><pages>9785-9794</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The capture of corrosive SO2 is of great importance in power plants but remains an energetically challenging process. We herein report a strategy to boost SO2 capture under low partial pressure conditions using cost-effective bio-resourced porous carbons (PCs), which involves controlling the microporosity and nitrogen content of nanosheet-like biocarbons to enhance interactions with SO2. This approach uses inexpensive biomass-derived humic acid as a precursor and melamine as a nitrogen source, where the N-doping level, porosity, and morphology are effectively regulated by Pluronic P123-induced self-assembly. The obtained PCs revealed a new record-high adsorption capacity (7.9 mmol/g at 25 °C/0.25 bar) for SO2 with an acceptable recyclability (over three cycles), which exceeded state-of-the-art porous sorbents. The strong affinity toward SO2, which was exemplified by in situ spectroscopic investigations and quantum-chemical calculations, was mainly attributed to strong hydrogen bonding of SO2 with −CH2 or −CH groups adjacent to the nitrogen atoms in the backbone as opposed to SO2-nitrogen interactions. This method opens a novel route to the preparation of biocarbon materials exhibiting specific morphologies and high porosities, in addition to contributing to the development of a potential method for the capture of SO2 by tailorable PCs in industrial processes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c00548</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2061-2907</orcidid><orcidid>https://orcid.org/0000-0002-1611-7372</orcidid><orcidid>https://orcid.org/0000-0001-8712-0512</orcidid><orcidid>https://orcid.org/0000-0002-7398-3605</orcidid><orcidid>https://orcid.org/0000-0003-3346-6627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2022-07, Vol.61 (27), p.9785-9794 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_iecr_2c00548 |
source | ACS Publications |
subjects | Separations |
title | Boosting SO2 Capture within Nitrogen-Doped Microporous Biocarbon Nanosheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20SO2%20Capture%20within%20Nitrogen-Doped%20Microporous%20Biocarbon%20Nanosheets&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Luo,%20Linfeng&rft.date=2022-07-13&rft.volume=61&rft.issue=27&rft.spage=9785&rft.epage=9794&rft.pages=9785-9794&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c00548&rft_dat=%3Cacs%3Ec92095868%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |