CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma

In this work, dielectric barrier discharge (DBD), a cold plasma phenomenon, was applied for CO2 decomposition. To enhance CO2 decomposition, we used a frosted dielectric quartz tube on which CeO2 was coated. Significantly increased CO2 conversion was thus achieved. The CO2 conversion reaches 23.3% o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2022-07, Vol.61 (29), p.10455-10460
Hauptverfasser: Xia, Mengyu, Ding, Wanyan, Shen, Chenyang, Zhang, Zhitao, Liu, Chang-jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10460
container_issue 29
container_start_page 10455
container_title Industrial & engineering chemistry research
container_volume 61
creator Xia, Mengyu
Ding, Wanyan
Shen, Chenyang
Zhang, Zhitao
Liu, Chang-jun
description In this work, dielectric barrier discharge (DBD), a cold plasma phenomenon, was applied for CO2 decomposition. To enhance CO2 decomposition, we used a frosted dielectric quartz tube on which CeO2 was coated. Significantly increased CO2 conversion was thus achieved. The CO2 conversion reaches 23.3% over the CeO2-enhanced frosted dielectric barrier discharge (FDBD) at 10 mL/min and a discharge power of 14.5 W, whereas it is only 16.3% over the uncoated FDBD at the same conditions. The highest energy efficiency reaches 8.0% at 50 mL/min, with which the energy efficiencies over the uncoated FDBD and the unfrosted quartz tube-based DBD are 6.0 and 5.4%, respectively. The increased CO2 conversion with higher energy efficiency is caused by the improved microdischarge performance of the CeO2-enhanced FDBD, with an advantage of easy loading and convenient removal of the CeO2-coated quartz over the traditional DBD packed with CeO2 fine particles.
doi_str_mv 10.1021/acs.iecr.2c00201
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_2c00201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b474361933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-ab97000bf67961027755c7d588dabc3366f95e6f9280c654ba71617320a89ae3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqGwZ-kDkDB24p8sIW0BqVJA6j6aOA51lSbIDqy5AlfkJLiimxnpPWnmvY-QWwYZA87u0YTMWeMzbgA4sDOSMMEhFVCIc5KA1joVWotLchXCHgCEKIqEvFW25r_fP6txh6OxHa1qTpfWTIePKbjZTSP9ckjXfgpzdJfODtbM3hn6iN4766MUzA79u6WvA4YDXpOLHodgb057Qbbr1bZ6Tjf100v1sEmRcT6n2JYqpmh7qUoZGyglhFFdjNhha_Jcyr4UNg6uwUhRtKiYZCrngLpEmy_I3f_ZWLzZT59-jM8aBs2RRnMUjzSaE438D7olVDs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma</title><source>ACS Publications</source><creator>Xia, Mengyu ; Ding, Wanyan ; Shen, Chenyang ; Zhang, Zhitao ; Liu, Chang-jun</creator><creatorcontrib>Xia, Mengyu ; Ding, Wanyan ; Shen, Chenyang ; Zhang, Zhitao ; Liu, Chang-jun</creatorcontrib><description>In this work, dielectric barrier discharge (DBD), a cold plasma phenomenon, was applied for CO2 decomposition. To enhance CO2 decomposition, we used a frosted dielectric quartz tube on which CeO2 was coated. Significantly increased CO2 conversion was thus achieved. The CO2 conversion reaches 23.3% over the CeO2-enhanced frosted dielectric barrier discharge (FDBD) at 10 mL/min and a discharge power of 14.5 W, whereas it is only 16.3% over the uncoated FDBD at the same conditions. The highest energy efficiency reaches 8.0% at 50 mL/min, with which the energy efficiencies over the uncoated FDBD and the unfrosted quartz tube-based DBD are 6.0 and 5.4%, respectively. The increased CO2 conversion with higher energy efficiency is caused by the improved microdischarge performance of the CeO2-enhanced FDBD, with an advantage of easy loading and convenient removal of the CeO2-coated quartz over the traditional DBD packed with CeO2 fine particles.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.2c00201</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Kinetics, Catalysis, and Reaction Engineering</subject><ispartof>Industrial &amp; engineering chemistry research, 2022-07, Vol.61 (29), p.10455-10460</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9918-1638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.2c00201$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.2c00201$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Xia, Mengyu</creatorcontrib><creatorcontrib>Ding, Wanyan</creatorcontrib><creatorcontrib>Shen, Chenyang</creatorcontrib><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liu, Chang-jun</creatorcontrib><title>CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>In this work, dielectric barrier discharge (DBD), a cold plasma phenomenon, was applied for CO2 decomposition. To enhance CO2 decomposition, we used a frosted dielectric quartz tube on which CeO2 was coated. Significantly increased CO2 conversion was thus achieved. The CO2 conversion reaches 23.3% over the CeO2-enhanced frosted dielectric barrier discharge (FDBD) at 10 mL/min and a discharge power of 14.5 W, whereas it is only 16.3% over the uncoated FDBD at the same conditions. The highest energy efficiency reaches 8.0% at 50 mL/min, with which the energy efficiencies over the uncoated FDBD and the unfrosted quartz tube-based DBD are 6.0 and 5.4%, respectively. The increased CO2 conversion with higher energy efficiency is caused by the improved microdischarge performance of the CeO2-enhanced FDBD, with an advantage of easy loading and convenient removal of the CeO2-coated quartz over the traditional DBD packed with CeO2 fine particles.</description><subject>Kinetics, Catalysis, and Reaction Engineering</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE1OwzAQhS0EEqGwZ-kDkDB24p8sIW0BqVJA6j6aOA51lSbIDqy5AlfkJLiimxnpPWnmvY-QWwYZA87u0YTMWeMzbgA4sDOSMMEhFVCIc5KA1joVWotLchXCHgCEKIqEvFW25r_fP6txh6OxHa1qTpfWTIePKbjZTSP9ckjXfgpzdJfODtbM3hn6iN4766MUzA79u6WvA4YDXpOLHodgb057Qbbr1bZ6Tjf100v1sEmRcT6n2JYqpmh7qUoZGyglhFFdjNhha_Jcyr4UNg6uwUhRtKiYZCrngLpEmy_I3f_ZWLzZT59-jM8aBs2RRnMUjzSaE438D7olVDs</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Xia, Mengyu</creator><creator>Ding, Wanyan</creator><creator>Shen, Chenyang</creator><creator>Zhang, Zhitao</creator><creator>Liu, Chang-jun</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9918-1638</orcidid></search><sort><creationdate>20220727</creationdate><title>CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma</title><author>Xia, Mengyu ; Ding, Wanyan ; Shen, Chenyang ; Zhang, Zhitao ; Liu, Chang-jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-ab97000bf67961027755c7d588dabc3366f95e6f9280c654ba71617320a89ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Kinetics, Catalysis, and Reaction Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Mengyu</creatorcontrib><creatorcontrib>Ding, Wanyan</creatorcontrib><creatorcontrib>Shen, Chenyang</creatorcontrib><creatorcontrib>Zhang, Zhitao</creatorcontrib><creatorcontrib>Liu, Chang-jun</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Mengyu</au><au>Ding, Wanyan</au><au>Shen, Chenyang</au><au>Zhang, Zhitao</au><au>Liu, Chang-jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2022-07-27</date><risdate>2022</risdate><volume>61</volume><issue>29</issue><spage>10455</spage><epage>10460</epage><pages>10455-10460</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>In this work, dielectric barrier discharge (DBD), a cold plasma phenomenon, was applied for CO2 decomposition. To enhance CO2 decomposition, we used a frosted dielectric quartz tube on which CeO2 was coated. Significantly increased CO2 conversion was thus achieved. The CO2 conversion reaches 23.3% over the CeO2-enhanced frosted dielectric barrier discharge (FDBD) at 10 mL/min and a discharge power of 14.5 W, whereas it is only 16.3% over the uncoated FDBD at the same conditions. The highest energy efficiency reaches 8.0% at 50 mL/min, with which the energy efficiencies over the uncoated FDBD and the unfrosted quartz tube-based DBD are 6.0 and 5.4%, respectively. The increased CO2 conversion with higher energy efficiency is caused by the improved microdischarge performance of the CeO2-enhanced FDBD, with an advantage of easy loading and convenient removal of the CeO2-coated quartz over the traditional DBD packed with CeO2 fine particles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.2c00201</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9918-1638</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2022-07, Vol.61 (29), p.10455-10460
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_2c00201
source ACS Publications
subjects Kinetics, Catalysis, and Reaction Engineering
title CeO2‑Enhanced CO2 Decomposition via Frosted Dielectric Barrier Discharge Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CeO2%E2%80%91Enhanced%20CO2%20Decomposition%20via%20Frosted%20Dielectric%20Barrier%20Discharge%20Plasma&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Xia,%20Mengyu&rft.date=2022-07-27&rft.volume=61&rft.issue=29&rft.spage=10455&rft.epage=10460&rft.pages=10455-10460&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.2c00201&rft_dat=%3Cacs%3Eb474361933%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true