Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration

Lithium-rich cathode oxides exhibit extraordinary specific capacities that are mainly ascribed to the accumulated redox reactions of anions and cations at high operating potentials. However, rapid capacity fading and voltage decay have been impeding the commercialization process. Herein, we report a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2020-10, Vol.59 (43), p.19312-19321
Hauptverfasser: Liu, Hao, Xiang, Wei, Bai, Changjiang, Qiu, Lang, Wu, Chen, Wang, Gongke, Liu, Yuxia, Song, Yang, Wu, Zhen-Guo, Guo, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19321
container_issue 43
container_start_page 19312
container_title Industrial & engineering chemistry research
container_volume 59
creator Liu, Hao
Xiang, Wei
Bai, Changjiang
Qiu, Lang
Wu, Chen
Wang, Gongke
Liu, Yuxia
Song, Yang
Wu, Zhen-Guo
Guo, Xiaodong
description Lithium-rich cathode oxides exhibit extraordinary specific capacities that are mainly ascribed to the accumulated redox reactions of anions and cations at high operating potentials. However, rapid capacity fading and voltage decay have been impeding the commercialization process. Herein, we report a surface integration strategy to improve the capacity and voltage stability of a Co-free lithium- and manganese-rich (LMR) cathode oxide Li1.2Ni0.2Mn0.6O2, by which the spinel phase and surface cobalt gradient doping are synchronously built on the surface of LMR microspheres. The spinel phase and surface cobalt gradient doping surface integration inhibit irreversible phase transformation (layered to spinel or rock-salt structure), promote lithium-ion diffusion, and improve the LMR cathode surface stability. This surface integration design enables a striking reversible discharge capacity of 280.05 mA h g–1 at 0.1 C and a superior cycling performance with a retention of 94.56% at 0.5 C after 200 cycles. Besides, the modified LMR cathode still exhibits an excellent specific capacity of 127.06 mA h g–1 at 10 C. This surface integration strategy opens a new scope for lithium-ion batteries with high energy density for practical applications in the near future.
doi_str_mv 10.1021/acs.iecr.0c04374
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_iecr_0c04374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c823186765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-4e135c82bdaa881474e2102c816ae991aeb967322530db4860b2e131df9a8cee3</originalsourceid><addsrcrecordid>eNotkE1PwzAMhiMEEmNw55gfQIuTJl16RNNgkzaG-DhXbuqumboGpZ0E_55M7GTZ1vtYfhi7F5AKkOIR7ZA6siEFCyqbqQs2EVpCokHpSzYBY0yijdHX7GYY9gCgtVIT9rPosepcv-Mfx28Kzge-6MiOwduWDs5ix98oND4csLfEfcPXbmzd8ZC8O9vGRqTy1UEqNz2k-VbyOY6tr4lvcIw47AZe_UZ2aDDGV_1Iu4Cj8_0tu2rilu7Odcq-nhef82Wy3r6s5k_rBIWUY6JIZNoaWdWIxgg1UyTjv9aIHKkoBFJV5LNMSp1BXSmTQyVjRNRNgcYSZVP28M-Ngsq9P4Y-XisFlCdr5Wl4slaerWV_I5th1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration</title><source>American Chemical Society Journals</source><creator>Liu, Hao ; Xiang, Wei ; Bai, Changjiang ; Qiu, Lang ; Wu, Chen ; Wang, Gongke ; Liu, Yuxia ; Song, Yang ; Wu, Zhen-Guo ; Guo, Xiaodong</creator><creatorcontrib>Liu, Hao ; Xiang, Wei ; Bai, Changjiang ; Qiu, Lang ; Wu, Chen ; Wang, Gongke ; Liu, Yuxia ; Song, Yang ; Wu, Zhen-Guo ; Guo, Xiaodong</creatorcontrib><description>Lithium-rich cathode oxides exhibit extraordinary specific capacities that are mainly ascribed to the accumulated redox reactions of anions and cations at high operating potentials. However, rapid capacity fading and voltage decay have been impeding the commercialization process. Herein, we report a surface integration strategy to improve the capacity and voltage stability of a Co-free lithium- and manganese-rich (LMR) cathode oxide Li1.2Ni0.2Mn0.6O2, by which the spinel phase and surface cobalt gradient doping are synchronously built on the surface of LMR microspheres. The spinel phase and surface cobalt gradient doping surface integration inhibit irreversible phase transformation (layered to spinel or rock-salt structure), promote lithium-ion diffusion, and improve the LMR cathode surface stability. This surface integration design enables a striking reversible discharge capacity of 280.05 mA h g–1 at 0.1 C and a superior cycling performance with a retention of 94.56% at 0.5 C after 200 cycles. Besides, the modified LMR cathode still exhibits an excellent specific capacity of 127.06 mA h g–1 at 10 C. This surface integration strategy opens a new scope for lithium-ion batteries with high energy density for practical applications in the near future.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.0c04374</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Materials and Interfaces</subject><ispartof>Industrial &amp; engineering chemistry research, 2020-10, Vol.59 (43), p.19312-19321</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8667-5257 ; 0000-0002-8153-2169 ; 0000-0003-0376-7760 ; 0000-0003-1139-8563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.0c04374$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.0c04374$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bai, Changjiang</creatorcontrib><creatorcontrib>Qiu, Lang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Wang, Gongke</creatorcontrib><creatorcontrib>Liu, Yuxia</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><title>Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Lithium-rich cathode oxides exhibit extraordinary specific capacities that are mainly ascribed to the accumulated redox reactions of anions and cations at high operating potentials. However, rapid capacity fading and voltage decay have been impeding the commercialization process. Herein, we report a surface integration strategy to improve the capacity and voltage stability of a Co-free lithium- and manganese-rich (LMR) cathode oxide Li1.2Ni0.2Mn0.6O2, by which the spinel phase and surface cobalt gradient doping are synchronously built on the surface of LMR microspheres. The spinel phase and surface cobalt gradient doping surface integration inhibit irreversible phase transformation (layered to spinel or rock-salt structure), promote lithium-ion diffusion, and improve the LMR cathode surface stability. This surface integration design enables a striking reversible discharge capacity of 280.05 mA h g–1 at 0.1 C and a superior cycling performance with a retention of 94.56% at 0.5 C after 200 cycles. Besides, the modified LMR cathode still exhibits an excellent specific capacity of 127.06 mA h g–1 at 10 C. This surface integration strategy opens a new scope for lithium-ion batteries with high energy density for practical applications in the near future.</description><subject>Materials and Interfaces</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotkE1PwzAMhiMEEmNw55gfQIuTJl16RNNgkzaG-DhXbuqumboGpZ0E_55M7GTZ1vtYfhi7F5AKkOIR7ZA6siEFCyqbqQs2EVpCokHpSzYBY0yijdHX7GYY9gCgtVIT9rPosepcv-Mfx28Kzge-6MiOwduWDs5ix98oND4csLfEfcPXbmzd8ZC8O9vGRqTy1UEqNz2k-VbyOY6tr4lvcIw47AZe_UZ2aDDGV_1Iu4Cj8_0tu2rilu7Odcq-nhef82Wy3r6s5k_rBIWUY6JIZNoaWdWIxgg1UyTjv9aIHKkoBFJV5LNMSp1BXSmTQyVjRNRNgcYSZVP28M-Ngsq9P4Y-XisFlCdr5Wl4slaerWV_I5th1Q</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Liu, Hao</creator><creator>Xiang, Wei</creator><creator>Bai, Changjiang</creator><creator>Qiu, Lang</creator><creator>Wu, Chen</creator><creator>Wang, Gongke</creator><creator>Liu, Yuxia</creator><creator>Song, Yang</creator><creator>Wu, Zhen-Guo</creator><creator>Guo, Xiaodong</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-0376-7760</orcidid><orcidid>https://orcid.org/0000-0003-1139-8563</orcidid></search><sort><creationdate>20201028</creationdate><title>Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration</title><author>Liu, Hao ; Xiang, Wei ; Bai, Changjiang ; Qiu, Lang ; Wu, Chen ; Wang, Gongke ; Liu, Yuxia ; Song, Yang ; Wu, Zhen-Guo ; Guo, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-4e135c82bdaa881474e2102c816ae991aeb967322530db4860b2e131df9a8cee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Bai, Changjiang</creatorcontrib><creatorcontrib>Qiu, Lang</creatorcontrib><creatorcontrib>Wu, Chen</creatorcontrib><creatorcontrib>Wang, Gongke</creatorcontrib><creatorcontrib>Liu, Yuxia</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Wu, Zhen-Guo</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hao</au><au>Xiang, Wei</au><au>Bai, Changjiang</au><au>Qiu, Lang</au><au>Wu, Chen</au><au>Wang, Gongke</au><au>Liu, Yuxia</au><au>Song, Yang</au><au>Wu, Zhen-Guo</au><au>Guo, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>59</volume><issue>43</issue><spage>19312</spage><epage>19321</epage><pages>19312-19321</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Lithium-rich cathode oxides exhibit extraordinary specific capacities that are mainly ascribed to the accumulated redox reactions of anions and cations at high operating potentials. However, rapid capacity fading and voltage decay have been impeding the commercialization process. Herein, we report a surface integration strategy to improve the capacity and voltage stability of a Co-free lithium- and manganese-rich (LMR) cathode oxide Li1.2Ni0.2Mn0.6O2, by which the spinel phase and surface cobalt gradient doping are synchronously built on the surface of LMR microspheres. The spinel phase and surface cobalt gradient doping surface integration inhibit irreversible phase transformation (layered to spinel or rock-salt structure), promote lithium-ion diffusion, and improve the LMR cathode surface stability. This surface integration design enables a striking reversible discharge capacity of 280.05 mA h g–1 at 0.1 C and a superior cycling performance with a retention of 94.56% at 0.5 C after 200 cycles. Besides, the modified LMR cathode still exhibits an excellent specific capacity of 127.06 mA h g–1 at 10 C. This surface integration strategy opens a new scope for lithium-ion batteries with high energy density for practical applications in the near future.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.0c04374</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8667-5257</orcidid><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-0376-7760</orcidid><orcidid>https://orcid.org/0000-0003-1139-8563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2020-10, Vol.59 (43), p.19312-19321
issn 0888-5885
1520-5045
language eng
recordid cdi_acs_journals_10_1021_acs_iecr_0c04374
source American Chemical Society Journals
subjects Materials and Interfaces
title Enabling Superior Electrochemical Performance of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Materials by Surface Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Superior%20Electrochemical%20Performance%20of%20Lithium-Rich%20Li1.2Ni0.2Mn0.6O2%20Cathode%20Materials%20by%20Surface%20Integration&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Liu,%20Hao&rft.date=2020-10-28&rft.volume=59&rft.issue=43&rft.spage=19312&rft.epage=19321&rft.pages=19312-19321&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.0c04374&rft_dat=%3Cacs%3Ec823186765%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true