Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions
Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures i...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2020-07, Vol.54 (13), p.8323-8332 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8332 |
---|---|
container_issue | 13 |
container_start_page | 8323 |
container_title | Environmental science & technology |
container_volume | 54 |
creator | Chavez Panduro, Elvia A Cordonnier, Benoît Gawel, Kamila Børve, Ingrid Iyer, Jaisree Carroll, Susan A Michels, Leander Rogowska, Melania McBeck, Jessica Ann Sørensen, Henning Osholm Walsh, Stuart D. C Renard, François Gibaud, Alain Torsæter, Malin Breiby, Dag W |
description | Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs. |
doi_str_mv | 10.1021/acs.est.0c00578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_est_0c00578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425005651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</originalsourceid><addsrcrecordid>eNqNUk1vEzEUtBAVDYUzRyw4oWrDs73-2AtStVBaKVJQKRI3y-t4G1eJXbxOEP8ebzaighMn28_z5o1mHkKvCMwJUPLe2GHuhjwHC8CleoJmhFOouOLkKZoBEFY1THw_Rc-H4R4AKAP1DJ0yyikXks7QzY0zG3zrtw6zj3jZDS7tTfYxDDj2-EtMeWPCCrdu60LGrUldDId_bMpzSfHXHJO5c7iNYeUPjS_QSW82g3t5PM_Qt8tPt-1VtVh-vm4vFpWpaZMr2_Ww4ry2neK1coRxOZYYJw0IZxxXddNz1wjVNNJK2UFvnFREqa5nijJ2hj5MvA-7butWtghMZqMfkt-a9EtH4_XfP8Gv9V3ca1kLKWpZCN5MBHHIXg_WZ2fXNobgbNZE1ExyUUDvJtD6H-6ri4Uea8AkZYKQPSnY1xPWJl8ogw7FG01AcaoVCDqOfHvUnOKPXUlO38ddCsUmTWvKS4iCjzxqQv10XeyLMBes-zO8xFgMG-0pN0Fanw-BtHEXcmk9___WR3TZo0clBPS4XHosjhKPy8V-A604vE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425005651</pqid></control><display><type>article</type><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><source>NORA - Norwegian Open Research Archives</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W</creator><creatorcontrib>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c00578</identifier><identifier>PMID: 32525672</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Calcium ; Calcium carbonate ; Carbon dioxide ; Carbon sequestration ; Carbonation ; Cement ; Chemical precipitation ; Computed tomography ; Deformation ; Dissolution ; Energy and Climate ; Engineering ; Engineering, Environmental ; Environmental Sciences ; Environmental Sciences & Ecology ; GEOSCIENCES ; Image resolution ; Layers ; Life Sciences & Biomedicine ; Oil reservoirs ; Physics ; Portland cement ; Portland cements ; Precipitation ; Real time ; Reservoir storage ; Reservoirs ; Science & Technology ; Silica ; Storage conditions ; Technology</subject><ispartof>Environmental science & technology, 2020-07, Vol.54 (13), p.8323-8332</ispartof><rights>Copyright American Chemical Society Jul 7, 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548584900061</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</cites><orcidid>0000-0002-1154-3030 ; 0000-0002-6456-3318 ; 0000-0002-7004-547X ; 0000-0003-3732-356X ; 0000-0002-5125-5930 ; 0000-0002-0023-681X ; 0000-0003-3074-509X ; 0000-0002-3694-2804 ; 0000-0002-7777-6427 ; 0000000264563318 ; 000000020023681X ; 000000033732356X ; 0000000211543030 ; 000000027004547X ; 0000000251255930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c00578$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c00578$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,26576,27085,27933,27934,28257,56747,56797</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03723611$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1643756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavez Panduro, Elvia A</creatorcontrib><creatorcontrib>Cordonnier, Benoît</creatorcontrib><creatorcontrib>Gawel, Kamila</creatorcontrib><creatorcontrib>Børve, Ingrid</creatorcontrib><creatorcontrib>Iyer, Jaisree</creatorcontrib><creatorcontrib>Carroll, Susan A</creatorcontrib><creatorcontrib>Michels, Leander</creatorcontrib><creatorcontrib>Rogowska, Melania</creatorcontrib><creatorcontrib>McBeck, Jessica Ann</creatorcontrib><creatorcontrib>Sørensen, Henning Osholm</creatorcontrib><creatorcontrib>Walsh, Stuart D. C</creatorcontrib><creatorcontrib>Renard, François</creatorcontrib><creatorcontrib>Gibaud, Alain</creatorcontrib><creatorcontrib>Torsæter, Malin</creatorcontrib><creatorcontrib>Breiby, Dag W</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><title>Environmental science & technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ. Sci. Technol</addtitle><description>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</description><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Cement</subject><subject>Chemical precipitation</subject><subject>Computed tomography</subject><subject>Deformation</subject><subject>Dissolution</subject><subject>Energy and Climate</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>GEOSCIENCES</subject><subject>Image resolution</subject><subject>Layers</subject><subject>Life Sciences & Biomedicine</subject><subject>Oil reservoirs</subject><subject>Physics</subject><subject>Portland cement</subject><subject>Portland cements</subject><subject>Precipitation</subject><subject>Real time</subject><subject>Reservoir storage</subject><subject>Reservoirs</subject><subject>Science & Technology</subject><subject>Silica</subject><subject>Storage conditions</subject><subject>Technology</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>3HK</sourceid><recordid>eNqNUk1vEzEUtBAVDYUzRyw4oWrDs73-2AtStVBaKVJQKRI3y-t4G1eJXbxOEP8ebzaighMn28_z5o1mHkKvCMwJUPLe2GHuhjwHC8CleoJmhFOouOLkKZoBEFY1THw_Rc-H4R4AKAP1DJ0yyikXks7QzY0zG3zrtw6zj3jZDS7tTfYxDDj2-EtMeWPCCrdu60LGrUldDId_bMpzSfHXHJO5c7iNYeUPjS_QSW82g3t5PM_Qt8tPt-1VtVh-vm4vFpWpaZMr2_Ww4ry2neK1coRxOZYYJw0IZxxXddNz1wjVNNJK2UFvnFREqa5nijJ2hj5MvA-7butWtghMZqMfkt-a9EtH4_XfP8Gv9V3ca1kLKWpZCN5MBHHIXg_WZ2fXNobgbNZE1ExyUUDvJtD6H-6ri4Uea8AkZYKQPSnY1xPWJl8ogw7FG01AcaoVCDqOfHvUnOKPXUlO38ddCsUmTWvKS4iCjzxqQv10XeyLMBes-zO8xFgMG-0pN0Fanw-BtHEXcmk9___WR3TZo0clBPS4XHosjhKPy8V-A604vE0</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Chavez Panduro, Elvia A</creator><creator>Cordonnier, Benoît</creator><creator>Gawel, Kamila</creator><creator>Børve, Ingrid</creator><creator>Iyer, Jaisree</creator><creator>Carroll, Susan A</creator><creator>Michels, Leander</creator><creator>Rogowska, Melania</creator><creator>McBeck, Jessica Ann</creator><creator>Sørensen, Henning Osholm</creator><creator>Walsh, Stuart D. C</creator><creator>Renard, François</creator><creator>Gibaud, Alain</creator><creator>Torsæter, Malin</creator><creator>Breiby, Dag W</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><general>ACS Publications</general><general>American Chemical Society (ACS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1154-3030</orcidid><orcidid>https://orcid.org/0000-0002-6456-3318</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-5125-5930</orcidid><orcidid>https://orcid.org/0000-0002-0023-681X</orcidid><orcidid>https://orcid.org/0000-0003-3074-509X</orcidid><orcidid>https://orcid.org/0000-0002-3694-2804</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000000264563318</orcidid><orcidid>https://orcid.org/000000020023681X</orcidid><orcidid>https://orcid.org/000000033732356X</orcidid><orcidid>https://orcid.org/0000000211543030</orcidid><orcidid>https://orcid.org/000000027004547X</orcidid><orcidid>https://orcid.org/0000000251255930</orcidid></search><sort><creationdate>20200707</creationdate><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><author>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Cement</topic><topic>Chemical precipitation</topic><topic>Computed tomography</topic><topic>Deformation</topic><topic>Dissolution</topic><topic>Energy and Climate</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>GEOSCIENCES</topic><topic>Image resolution</topic><topic>Layers</topic><topic>Life Sciences & Biomedicine</topic><topic>Oil reservoirs</topic><topic>Physics</topic><topic>Portland cement</topic><topic>Portland cements</topic><topic>Precipitation</topic><topic>Real time</topic><topic>Reservoir storage</topic><topic>Reservoirs</topic><topic>Science & Technology</topic><topic>Silica</topic><topic>Storage conditions</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez Panduro, Elvia A</creatorcontrib><creatorcontrib>Cordonnier, Benoît</creatorcontrib><creatorcontrib>Gawel, Kamila</creatorcontrib><creatorcontrib>Børve, Ingrid</creatorcontrib><creatorcontrib>Iyer, Jaisree</creatorcontrib><creatorcontrib>Carroll, Susan A</creatorcontrib><creatorcontrib>Michels, Leander</creatorcontrib><creatorcontrib>Rogowska, Melania</creatorcontrib><creatorcontrib>McBeck, Jessica Ann</creatorcontrib><creatorcontrib>Sørensen, Henning Osholm</creatorcontrib><creatorcontrib>Walsh, Stuart D. C</creatorcontrib><creatorcontrib>Renard, François</creatorcontrib><creatorcontrib>Gibaud, Alain</creatorcontrib><creatorcontrib>Torsæter, Malin</creatorcontrib><creatorcontrib>Breiby, Dag W</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez Panduro, Elvia A</au><au>Cordonnier, Benoît</au><au>Gawel, Kamila</au><au>Børve, Ingrid</au><au>Iyer, Jaisree</au><au>Carroll, Susan A</au><au>Michels, Leander</au><au>Rogowska, Melania</au><au>McBeck, Jessica Ann</au><au>Sørensen, Henning Osholm</au><au>Walsh, Stuart D. C</au><au>Renard, François</au><au>Gibaud, Alain</au><au>Torsæter, Malin</au><au>Breiby, Dag W</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</atitle><jtitle>Environmental science & technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>54</volume><issue>13</issue><spage>8323</spage><epage>8332</epage><pages>8323-8332</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32525672</pmid><doi>10.1021/acs.est.0c00578</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1154-3030</orcidid><orcidid>https://orcid.org/0000-0002-6456-3318</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-5125-5930</orcidid><orcidid>https://orcid.org/0000-0002-0023-681X</orcidid><orcidid>https://orcid.org/0000-0003-3074-509X</orcidid><orcidid>https://orcid.org/0000-0002-3694-2804</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000000264563318</orcidid><orcidid>https://orcid.org/000000020023681X</orcidid><orcidid>https://orcid.org/000000033732356X</orcidid><orcidid>https://orcid.org/0000000211543030</orcidid><orcidid>https://orcid.org/000000027004547X</orcidid><orcidid>https://orcid.org/0000000251255930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2020-07, Vol.54 (13), p.8323-8332 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_est_0c00578 |
source | NORA - Norwegian Open Research Archives; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Calcium Calcium carbonate Carbon dioxide Carbon sequestration Carbonation Cement Chemical precipitation Computed tomography Deformation Dissolution Energy and Climate Engineering Engineering, Environmental Environmental Sciences Environmental Sciences & Ecology GEOSCIENCES Image resolution Layers Life Sciences & Biomedicine Oil reservoirs Physics Portland cement Portland cements Precipitation Real time Reservoir storage Reservoirs Science & Technology Silica Storage conditions Technology |
title | Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%203D%20Observations%20of%20Portland%20Cement%20Carbonation%20at%20CO2%20Storage%20Conditions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chavez%20Panduro,%20Elvia%20A&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-07-07&rft.volume=54&rft.issue=13&rft.spage=8323&rft.epage=8332&rft.pages=8323-8332&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c00578&rft_dat=%3Cproquest_acs_j%3E2425005651%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425005651&rft_id=info:pmid/32525672&rfr_iscdi=true |