Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions

Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2020-07, Vol.54 (13), p.8323-8332
Hauptverfasser: Chavez Panduro, Elvia A, Cordonnier, Benoît, Gawel, Kamila, Børve, Ingrid, Iyer, Jaisree, Carroll, Susan A, Michels, Leander, Rogowska, Melania, McBeck, Jessica Ann, Sørensen, Henning Osholm, Walsh, Stuart D. C, Renard, François, Gibaud, Alain, Torsæter, Malin, Breiby, Dag W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8332
container_issue 13
container_start_page 8323
container_title Environmental science & technology
container_volume 54
creator Chavez Panduro, Elvia A
Cordonnier, Benoît
Gawel, Kamila
Børve, Ingrid
Iyer, Jaisree
Carroll, Susan A
Michels, Leander
Rogowska, Melania
McBeck, Jessica Ann
Sørensen, Henning Osholm
Walsh, Stuart D. C
Renard, François
Gibaud, Alain
Torsæter, Malin
Breiby, Dag W
description Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.
doi_str_mv 10.1021/acs.est.0c00578
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_est_0c00578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425005651</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</originalsourceid><addsrcrecordid>eNqNUk1vEzEUtBAVDYUzRyw4oWrDs73-2AtStVBaKVJQKRI3y-t4G1eJXbxOEP8ebzaighMn28_z5o1mHkKvCMwJUPLe2GHuhjwHC8CleoJmhFOouOLkKZoBEFY1THw_Rc-H4R4AKAP1DJ0yyikXks7QzY0zG3zrtw6zj3jZDS7tTfYxDDj2-EtMeWPCCrdu60LGrUldDId_bMpzSfHXHJO5c7iNYeUPjS_QSW82g3t5PM_Qt8tPt-1VtVh-vm4vFpWpaZMr2_Ww4ry2neK1coRxOZYYJw0IZxxXddNz1wjVNNJK2UFvnFREqa5nijJ2hj5MvA-7butWtghMZqMfkt-a9EtH4_XfP8Gv9V3ca1kLKWpZCN5MBHHIXg_WZ2fXNobgbNZE1ExyUUDvJtD6H-6ri4Uea8AkZYKQPSnY1xPWJl8ogw7FG01AcaoVCDqOfHvUnOKPXUlO38ddCsUmTWvKS4iCjzxqQv10XeyLMBes-zO8xFgMG-0pN0Fanw-BtHEXcmk9___WR3TZo0clBPS4XHosjhKPy8V-A604vE0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425005651</pqid></control><display><type>article</type><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><source>NORA - Norwegian Open Research Archives</source><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W</creator><creatorcontrib>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.0c00578</identifier><identifier>PMID: 32525672</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Calcium ; Calcium carbonate ; Carbon dioxide ; Carbon sequestration ; Carbonation ; Cement ; Chemical precipitation ; Computed tomography ; Deformation ; Dissolution ; Energy and Climate ; Engineering ; Engineering, Environmental ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; GEOSCIENCES ; Image resolution ; Layers ; Life Sciences &amp; Biomedicine ; Oil reservoirs ; Physics ; Portland cement ; Portland cements ; Precipitation ; Real time ; Reservoir storage ; Reservoirs ; Science &amp; Technology ; Silica ; Storage conditions ; Technology</subject><ispartof>Environmental science &amp; technology, 2020-07, Vol.54 (13), p.8323-8332</ispartof><rights>Copyright American Chemical Society Jul 7, 2020</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>28</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548584900061</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</cites><orcidid>0000-0002-1154-3030 ; 0000-0002-6456-3318 ; 0000-0002-7004-547X ; 0000-0003-3732-356X ; 0000-0002-5125-5930 ; 0000-0002-0023-681X ; 0000-0003-3074-509X ; 0000-0002-3694-2804 ; 0000-0002-7777-6427 ; 0000000264563318 ; 000000020023681X ; 000000033732356X ; 0000000211543030 ; 000000027004547X ; 0000000251255930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.0c00578$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.0c00578$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,782,786,887,26576,27085,27933,27934,28257,56747,56797</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03723611$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1643756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavez Panduro, Elvia A</creatorcontrib><creatorcontrib>Cordonnier, Benoît</creatorcontrib><creatorcontrib>Gawel, Kamila</creatorcontrib><creatorcontrib>Børve, Ingrid</creatorcontrib><creatorcontrib>Iyer, Jaisree</creatorcontrib><creatorcontrib>Carroll, Susan A</creatorcontrib><creatorcontrib>Michels, Leander</creatorcontrib><creatorcontrib>Rogowska, Melania</creatorcontrib><creatorcontrib>McBeck, Jessica Ann</creatorcontrib><creatorcontrib>Sørensen, Henning Osholm</creatorcontrib><creatorcontrib>Walsh, Stuart D. C</creatorcontrib><creatorcontrib>Renard, François</creatorcontrib><creatorcontrib>Gibaud, Alain</creatorcontrib><creatorcontrib>Torsæter, Malin</creatorcontrib><creatorcontrib>Breiby, Dag W</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><title>Environmental science &amp; technology</title><addtitle>ENVIRON SCI TECHNOL</addtitle><addtitle>Environ. Sci. Technol</addtitle><description>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</description><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonation</subject><subject>Cement</subject><subject>Chemical precipitation</subject><subject>Computed tomography</subject><subject>Deformation</subject><subject>Dissolution</subject><subject>Energy and Climate</subject><subject>Engineering</subject><subject>Engineering, Environmental</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>GEOSCIENCES</subject><subject>Image resolution</subject><subject>Layers</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Oil reservoirs</subject><subject>Physics</subject><subject>Portland cement</subject><subject>Portland cements</subject><subject>Precipitation</subject><subject>Real time</subject><subject>Reservoir storage</subject><subject>Reservoirs</subject><subject>Science &amp; Technology</subject><subject>Silica</subject><subject>Storage conditions</subject><subject>Technology</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>3HK</sourceid><recordid>eNqNUk1vEzEUtBAVDYUzRyw4oWrDs73-2AtStVBaKVJQKRI3y-t4G1eJXbxOEP8ebzaighMn28_z5o1mHkKvCMwJUPLe2GHuhjwHC8CleoJmhFOouOLkKZoBEFY1THw_Rc-H4R4AKAP1DJ0yyikXks7QzY0zG3zrtw6zj3jZDS7tTfYxDDj2-EtMeWPCCrdu60LGrUldDId_bMpzSfHXHJO5c7iNYeUPjS_QSW82g3t5PM_Qt8tPt-1VtVh-vm4vFpWpaZMr2_Ww4ry2neK1coRxOZYYJw0IZxxXddNz1wjVNNJK2UFvnFREqa5nijJ2hj5MvA-7butWtghMZqMfkt-a9EtH4_XfP8Gv9V3ca1kLKWpZCN5MBHHIXg_WZ2fXNobgbNZE1ExyUUDvJtD6H-6ri4Uea8AkZYKQPSnY1xPWJl8ogw7FG01AcaoVCDqOfHvUnOKPXUlO38ddCsUmTWvKS4iCjzxqQv10XeyLMBes-zO8xFgMG-0pN0Fanw-BtHEXcmk9___WR3TZo0clBPS4XHosjhKPy8V-A604vE0</recordid><startdate>20200707</startdate><enddate>20200707</enddate><creator>Chavez Panduro, Elvia A</creator><creator>Cordonnier, Benoît</creator><creator>Gawel, Kamila</creator><creator>Børve, Ingrid</creator><creator>Iyer, Jaisree</creator><creator>Carroll, Susan A</creator><creator>Michels, Leander</creator><creator>Rogowska, Melania</creator><creator>McBeck, Jessica Ann</creator><creator>Sørensen, Henning Osholm</creator><creator>Walsh, Stuart D. C</creator><creator>Renard, François</creator><creator>Gibaud, Alain</creator><creator>Torsæter, Malin</creator><creator>Breiby, Dag W</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><general>ACS Publications</general><general>American Chemical Society (ACS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>3HK</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1154-3030</orcidid><orcidid>https://orcid.org/0000-0002-6456-3318</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-5125-5930</orcidid><orcidid>https://orcid.org/0000-0002-0023-681X</orcidid><orcidid>https://orcid.org/0000-0003-3074-509X</orcidid><orcidid>https://orcid.org/0000-0002-3694-2804</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000000264563318</orcidid><orcidid>https://orcid.org/000000020023681X</orcidid><orcidid>https://orcid.org/000000033732356X</orcidid><orcidid>https://orcid.org/0000000211543030</orcidid><orcidid>https://orcid.org/000000027004547X</orcidid><orcidid>https://orcid.org/0000000251255930</orcidid></search><sort><creationdate>20200707</creationdate><title>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</title><author>Chavez Panduro, Elvia A ; Cordonnier, Benoît ; Gawel, Kamila ; Børve, Ingrid ; Iyer, Jaisree ; Carroll, Susan A ; Michels, Leander ; Rogowska, Melania ; McBeck, Jessica Ann ; Sørensen, Henning Osholm ; Walsh, Stuart D. C ; Renard, François ; Gibaud, Alain ; Torsæter, Malin ; Breiby, Dag W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-cbf0d554cb8548e1357cbf0351906eae5849f5e968997c77b0fae78188bf38233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonation</topic><topic>Cement</topic><topic>Chemical precipitation</topic><topic>Computed tomography</topic><topic>Deformation</topic><topic>Dissolution</topic><topic>Energy and Climate</topic><topic>Engineering</topic><topic>Engineering, Environmental</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>GEOSCIENCES</topic><topic>Image resolution</topic><topic>Layers</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Oil reservoirs</topic><topic>Physics</topic><topic>Portland cement</topic><topic>Portland cements</topic><topic>Precipitation</topic><topic>Real time</topic><topic>Reservoir storage</topic><topic>Reservoirs</topic><topic>Science &amp; Technology</topic><topic>Silica</topic><topic>Storage conditions</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavez Panduro, Elvia A</creatorcontrib><creatorcontrib>Cordonnier, Benoît</creatorcontrib><creatorcontrib>Gawel, Kamila</creatorcontrib><creatorcontrib>Børve, Ingrid</creatorcontrib><creatorcontrib>Iyer, Jaisree</creatorcontrib><creatorcontrib>Carroll, Susan A</creatorcontrib><creatorcontrib>Michels, Leander</creatorcontrib><creatorcontrib>Rogowska, Melania</creatorcontrib><creatorcontrib>McBeck, Jessica Ann</creatorcontrib><creatorcontrib>Sørensen, Henning Osholm</creatorcontrib><creatorcontrib>Walsh, Stuart D. C</creatorcontrib><creatorcontrib>Renard, François</creatorcontrib><creatorcontrib>Gibaud, Alain</creatorcontrib><creatorcontrib>Torsæter, Malin</creatorcontrib><creatorcontrib>Breiby, Dag W</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez Panduro, Elvia A</au><au>Cordonnier, Benoît</au><au>Gawel, Kamila</au><au>Børve, Ingrid</au><au>Iyer, Jaisree</au><au>Carroll, Susan A</au><au>Michels, Leander</au><au>Rogowska, Melania</au><au>McBeck, Jessica Ann</au><au>Sørensen, Henning Osholm</au><au>Walsh, Stuart D. C</au><au>Renard, François</au><au>Gibaud, Alain</au><au>Torsæter, Malin</au><au>Breiby, Dag W</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions</atitle><jtitle>Environmental science &amp; technology</jtitle><stitle>ENVIRON SCI TECHNOL</stitle><addtitle>Environ. Sci. Technol</addtitle><date>2020-07-07</date><risdate>2020</risdate><volume>54</volume><issue>13</issue><spage>8323</spage><epage>8332</epage><pages>8323-8332</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Depleted oil reservoirs are considered a viable solution to the global challenge of CO2 storage. A key concern is whether the wells can be suitably sealed with cement to hinder the escape of CO2. Under reservoir conditions, CO2 is in its supercritical state, and the high pressures and temperatures involved make real-time microscopic observations of cement degradation experimentally challenging. Here, we present an in situ 3D dynamic X-ray micro computed tomography (μ-CT) study of well cement carbonation at realistic reservoir stress, pore-pressure, and temperature conditions. The high-resolution time-lapse 3D images allow monitoring the progress of reaction fronts in Portland cement, including density changes, sample deformation, and mineral precipitation and dissolution. By switching between flow and nonflow conditions of CO2-saturated water through cement, we were able to delineate regimes dominated by calcium carbonate precipitation and dissolution. For the first time, we demonstrate experimentally the impact of the flow history on CO2 leakage risk for cement plugging. In-situ μ-CT experiments combined with geochemical modeling provide unique insight into the interactions between CO2 and cement, potentially helping in assessing the risks of CO2 storage in geological reservoirs.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32525672</pmid><doi>10.1021/acs.est.0c00578</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1154-3030</orcidid><orcidid>https://orcid.org/0000-0002-6456-3318</orcidid><orcidid>https://orcid.org/0000-0002-7004-547X</orcidid><orcidid>https://orcid.org/0000-0003-3732-356X</orcidid><orcidid>https://orcid.org/0000-0002-5125-5930</orcidid><orcidid>https://orcid.org/0000-0002-0023-681X</orcidid><orcidid>https://orcid.org/0000-0003-3074-509X</orcidid><orcidid>https://orcid.org/0000-0002-3694-2804</orcidid><orcidid>https://orcid.org/0000-0002-7777-6427</orcidid><orcidid>https://orcid.org/0000000264563318</orcidid><orcidid>https://orcid.org/000000020023681X</orcidid><orcidid>https://orcid.org/000000033732356X</orcidid><orcidid>https://orcid.org/0000000211543030</orcidid><orcidid>https://orcid.org/000000027004547X</orcidid><orcidid>https://orcid.org/0000000251255930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2020-07, Vol.54 (13), p.8323-8332
issn 0013-936X
1520-5851
language eng
recordid cdi_acs_journals_10_1021_acs_est_0c00578
source NORA - Norwegian Open Research Archives; ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Calcium
Calcium carbonate
Carbon dioxide
Carbon sequestration
Carbonation
Cement
Chemical precipitation
Computed tomography
Deformation
Dissolution
Energy and Climate
Engineering
Engineering, Environmental
Environmental Sciences
Environmental Sciences & Ecology
GEOSCIENCES
Image resolution
Layers
Life Sciences & Biomedicine
Oil reservoirs
Physics
Portland cement
Portland cements
Precipitation
Real time
Reservoir storage
Reservoirs
Science & Technology
Silica
Storage conditions
Technology
title Real Time 3D Observations of Portland Cement Carbonation at CO2 Storage Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T01%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Time%203D%20Observations%20of%20Portland%20Cement%20Carbonation%20at%20CO2%20Storage%20Conditions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Chavez%20Panduro,%20Elvia%20A&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-07-07&rft.volume=54&rft.issue=13&rft.spage=8323&rft.epage=8332&rft.pages=8323-8332&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.0c00578&rft_dat=%3Cproquest_acs_j%3E2425005651%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2425005651&rft_id=info:pmid/32525672&rfr_iscdi=true