Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner

We conducted coupled reactive mass transport modeling of CO2 storage in a sandy aquifer resembling the uppermost layer in the Utsira Sand, Sleipner, North Sea, in order to investigate the general effects of rate laws and regional groundwater flow on long-term CO2 fate in saline aquifers. The tempora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2016-05, Vol.30 (5), p.4159-4180
Hauptverfasser: Zhang, Guanru, Lu, Peng, Wei, Xiaomei, Zhu, Chen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4180
container_issue 5
container_start_page 4159
container_title Energy & fuels
container_volume 30
creator Zhang, Guanru
Lu, Peng
Wei, Xiaomei
Zhu, Chen
description We conducted coupled reactive mass transport modeling of CO2 storage in a sandy aquifer resembling the uppermost layer in the Utsira Sand, Sleipner, North Sea, in order to investigate the general effects of rate laws and regional groundwater flow on long-term CO2 fate in saline aquifers. The temporal and spatial evolution of CO2 plume and the fate of injected CO2 were simulated with a series of scenarios with different rate law formulations for dissolution and precipitation reactions and different flow regimes. The results indicated the following: (1) Changing the dissolution rate laws of the main soluble silicate minerals can influence the silicate reactions and mineral trapping by impacting the sensitivity of the relevant coupled reaction’s rate to the acidification of brine. The steeper the slope of rate−ΔG r (Gibbs free energy of reaction) relationships, the more sensitive the coupled reaction rate and the mineral trapping are to the acidification of brine. The predicted fraction of CO2 mineral trapping when using the linear rate law for feldspar dissolution is twice as much as when using the nonlinear rate law. (2) Mineral trapping is more significant when regional groundwater flow is taken into consideration. Under the influence of regional groundwater flow, the replenishment of fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a larger acidified area where mineral trapping takes place. In a Sleipner-like aquifer, the upstream replenishment of groundwater results in ∼22% mineral trapping at year 10 000, compared to ∼4% when the effects of regional groundwater are ignored. (3) Using linear rate law for silicate dissolution reactions can exaggerate the effect of groundwater flow on the reaction rates and mineral trapping and can overestimate the theoretical mineral trapping capacity, compared to using the nonlinear rate law.
doi_str_mv 10.1021/acs.energyfuels.5b02556
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_energyfuels_5b02556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b925928934</sourcerecordid><originalsourceid>FETCH-LOGICAL-a199t-345e1b911e0fe5aa16a0a748c23905b33952d8c38d83d901a034099fb4a4c82f3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoWKfPYF6g9SRpuuRSipvDykDndTltktLRtaNpGb69GduFVwe-_-fn8BHyzCBhwNkL1j6xvR2bXzfbzieyAi5ldkMiJjnEEri-JREotYwh4-k9efB-DwCZUDIiZnM4Yj15Ojj62YYZ7OiXDaQdevoRwNTWnmJvAm0CC_F6HObenHCyI111w4mGZjH0Tbyz44HmW05XIaM40e_Otsew-UjuHHbePl3vgvys3nb5e1xs15v8tYiRaT3FIpWWVZoxC85KRJYh4DJVNRcaZCWEltyoWiijhNHAEEQKWrsqxbRW3IkFEZfd4KTcD_MY3vUlg_IsqjzDf6LKqyjxB0Y3YKs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner</title><source>American Chemical Society Journals</source><creator>Zhang, Guanru ; Lu, Peng ; Wei, Xiaomei ; Zhu, Chen</creator><creatorcontrib>Zhang, Guanru ; Lu, Peng ; Wei, Xiaomei ; Zhu, Chen</creatorcontrib><description>We conducted coupled reactive mass transport modeling of CO2 storage in a sandy aquifer resembling the uppermost layer in the Utsira Sand, Sleipner, North Sea, in order to investigate the general effects of rate laws and regional groundwater flow on long-term CO2 fate in saline aquifers. The temporal and spatial evolution of CO2 plume and the fate of injected CO2 were simulated with a series of scenarios with different rate law formulations for dissolution and precipitation reactions and different flow regimes. The results indicated the following: (1) Changing the dissolution rate laws of the main soluble silicate minerals can influence the silicate reactions and mineral trapping by impacting the sensitivity of the relevant coupled reaction’s rate to the acidification of brine. The steeper the slope of rate−ΔG r (Gibbs free energy of reaction) relationships, the more sensitive the coupled reaction rate and the mineral trapping are to the acidification of brine. The predicted fraction of CO2 mineral trapping when using the linear rate law for feldspar dissolution is twice as much as when using the nonlinear rate law. (2) Mineral trapping is more significant when regional groundwater flow is taken into consideration. Under the influence of regional groundwater flow, the replenishment of fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a larger acidified area where mineral trapping takes place. In a Sleipner-like aquifer, the upstream replenishment of groundwater results in ∼22% mineral trapping at year 10 000, compared to ∼4% when the effects of regional groundwater are ignored. (3) Using linear rate law for silicate dissolution reactions can exaggerate the effect of groundwater flow on the reaction rates and mineral trapping and can overestimate the theoretical mineral trapping capacity, compared to using the nonlinear rate law.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.5b02556</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2016-05, Vol.30 (5), p.4159-4180</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.5b02556$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.5b02556$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Zhang, Guanru</creatorcontrib><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Wei, Xiaomei</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><title>Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>We conducted coupled reactive mass transport modeling of CO2 storage in a sandy aquifer resembling the uppermost layer in the Utsira Sand, Sleipner, North Sea, in order to investigate the general effects of rate laws and regional groundwater flow on long-term CO2 fate in saline aquifers. The temporal and spatial evolution of CO2 plume and the fate of injected CO2 were simulated with a series of scenarios with different rate law formulations for dissolution and precipitation reactions and different flow regimes. The results indicated the following: (1) Changing the dissolution rate laws of the main soluble silicate minerals can influence the silicate reactions and mineral trapping by impacting the sensitivity of the relevant coupled reaction’s rate to the acidification of brine. The steeper the slope of rate−ΔG r (Gibbs free energy of reaction) relationships, the more sensitive the coupled reaction rate and the mineral trapping are to the acidification of brine. The predicted fraction of CO2 mineral trapping when using the linear rate law for feldspar dissolution is twice as much as when using the nonlinear rate law. (2) Mineral trapping is more significant when regional groundwater flow is taken into consideration. Under the influence of regional groundwater flow, the replenishment of fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a larger acidified area where mineral trapping takes place. In a Sleipner-like aquifer, the upstream replenishment of groundwater results in ∼22% mineral trapping at year 10 000, compared to ∼4% when the effects of regional groundwater are ignored. (3) Using linear rate law for silicate dissolution reactions can exaggerate the effect of groundwater flow on the reaction rates and mineral trapping and can overestimate the theoretical mineral trapping capacity, compared to using the nonlinear rate law.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkNFKwzAUhoMoWKfPYF6g9SRpuuRSipvDykDndTltktLRtaNpGb69GduFVwe-_-fn8BHyzCBhwNkL1j6xvR2bXzfbzieyAi5ldkMiJjnEEri-JREotYwh4-k9efB-DwCZUDIiZnM4Yj15Ojj62YYZ7OiXDaQdevoRwNTWnmJvAm0CC_F6HObenHCyI111w4mGZjH0Tbyz44HmW05XIaM40e_Otsew-UjuHHbePl3vgvys3nb5e1xs15v8tYiRaT3FIpWWVZoxC85KRJYh4DJVNRcaZCWEltyoWiijhNHAEEQKWrsqxbRW3IkFEZfd4KTcD_MY3vUlg_IsqjzDf6LKqyjxB0Y3YKs</recordid><startdate>20160519</startdate><enddate>20160519</enddate><creator>Zhang, Guanru</creator><creator>Lu, Peng</creator><creator>Wei, Xiaomei</creator><creator>Zhu, Chen</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160519</creationdate><title>Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner</title><author>Zhang, Guanru ; Lu, Peng ; Wei, Xiaomei ; Zhu, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a199t-345e1b911e0fe5aa16a0a748c23905b33952d8c38d83d901a034099fb4a4c82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guanru</creatorcontrib><creatorcontrib>Lu, Peng</creatorcontrib><creatorcontrib>Wei, Xiaomei</creatorcontrib><creatorcontrib>Zhu, Chen</creatorcontrib><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guanru</au><au>Lu, Peng</au><au>Wei, Xiaomei</au><au>Zhu, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2016-05-19</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>4159</spage><epage>4180</epage><pages>4159-4180</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>We conducted coupled reactive mass transport modeling of CO2 storage in a sandy aquifer resembling the uppermost layer in the Utsira Sand, Sleipner, North Sea, in order to investigate the general effects of rate laws and regional groundwater flow on long-term CO2 fate in saline aquifers. The temporal and spatial evolution of CO2 plume and the fate of injected CO2 were simulated with a series of scenarios with different rate law formulations for dissolution and precipitation reactions and different flow regimes. The results indicated the following: (1) Changing the dissolution rate laws of the main soluble silicate minerals can influence the silicate reactions and mineral trapping by impacting the sensitivity of the relevant coupled reaction’s rate to the acidification of brine. The steeper the slope of rate−ΔG r (Gibbs free energy of reaction) relationships, the more sensitive the coupled reaction rate and the mineral trapping are to the acidification of brine. The predicted fraction of CO2 mineral trapping when using the linear rate law for feldspar dissolution is twice as much as when using the nonlinear rate law. (2) Mineral trapping is more significant when regional groundwater flow is taken into consideration. Under the influence of regional groundwater flow, the replenishment of fresh brine from upstream continuously dissolves CO2 at the tail of CO2 plume, generating a larger acidified area where mineral trapping takes place. In a Sleipner-like aquifer, the upstream replenishment of groundwater results in ∼22% mineral trapping at year 10 000, compared to ∼4% when the effects of regional groundwater are ignored. (3) Using linear rate law for silicate dissolution reactions can exaggerate the effect of groundwater flow on the reaction rates and mineral trapping and can overestimate the theoretical mineral trapping capacity, compared to using the nonlinear rate law.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.5b02556</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2016-05, Vol.30 (5), p.4159-4180
issn 0887-0624
1520-5029
language eng
recordid cdi_acs_journals_10_1021_acs_energyfuels_5b02556
source American Chemical Society Journals
title Impacts of Mineral Reaction Kinetics and Regional Groundwater Flow on Long-Term CO2 Fate at Sleipner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Mineral%20Reaction%20Kinetics%20and%20Regional%20Groundwater%20Flow%20on%20Long-Term%20CO2%20Fate%20at%20Sleipner&rft.jtitle=Energy%20&%20fuels&rft.au=Zhang,%20Guanru&rft.date=2016-05-19&rft.volume=30&rft.issue=5&rft.spage=4159&rft.epage=4180&rft.pages=4159-4180&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.5b02556&rft_dat=%3Cacs%3Eb925928934%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true