Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction

Exploring novel anode materials plays a crucial role in further improving the overall electrochemical performance of rechargeable Li-ion batteries (LIBs) for emerging applications in large-scale energy storage. Vanadium dioxide (VO2) has a high theoretical capacity and low cost, possessing great pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2024-03, Vol.38 (5), p.4689-4698
Hauptverfasser: Zhao, Ziwei, Xu, Xuanpan, Wang, Hong-En
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4698
container_issue 5
container_start_page 4689
container_title Energy & fuels
container_volume 38
creator Zhao, Ziwei
Xu, Xuanpan
Wang, Hong-En
description Exploring novel anode materials plays a crucial role in further improving the overall electrochemical performance of rechargeable Li-ion batteries (LIBs) for emerging applications in large-scale energy storage. Vanadium dioxide (VO2) has a high theoretical capacity and low cost, possessing great potential as an alternative anode material for rechargeable LIBs. Compared to monoclinic VO2-M and metastable VO2-B, the electrochemical Li-ion storage capability of tetragonal rutile-type VO2-R (particularly in the nanoscale form) has been less refined, limiting its potential application in LIBs. Herein, a heterostructure nanocomposite, constructed by few-layered reduced graphene oxide (rGO) sheets covered by VO2-R nanoparticles (rGO/VO2-R), has been successfully synthesized by a controlled wet-chemical route. The resultant rGO/VO2-R composite exhibits good electrochemical properties with high capacity and superior rate and cycling performances owing to the effective combination of the high electrical conduction of the flexible rGO substrate and VO2-R nanoparticles with enhanced redox kinetics. First-principles simulations reveal that the formation of a graphene/VO2 heterostructure is energetically feasible. Further, such a heterostructure can benefit the electron/Li+ transfer and afford abundant sites for Li+ storage at the interface. The presented research can provide some new insights into the reasonable design and fabrication of carbon-related (nano)­composites with distinct phase and composition control for promising applications in rechargeable Li-ion batteries and supercapacitors.
doi_str_mv 10.1021/acs.energyfuels.3c04428
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_energyfuels_3c04428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c789667906</sourcerecordid><originalsourceid>FETCH-LOGICAL-a199t-1aafb9dca3a5be872dc23fcf79afb57289d143bf48e6689fb6a1a9b56362627d3</originalsourceid><addsrcrecordid>eNpN0MtKw0AYBeBBFKzVZ3BeIO1cksnMUkptC4GKl27Dn8k_TUqdkWQiuPMVfMU-iS124erAWZwDHyH3nE04E3wKtp-gx2775Qbc9xNpWZoKfUFGPBMsyZgwl2TEtM4TpkR6TW76fscYU1JnI7KZ-wa8xZo-9TjUwcIH2Da2n0iLNjbt8J6sgqcvMXSwRdp6CnQWGuzQR9ot1tPNWhy-f57pEiN2YTd4G9vgb8mVg32Pd-cck7fH-etsmRTrxWr2UCTAjYkJB3CVqS1IyCrUuaitkM663Bz7LBfa1DyVlUs1KqWNqxRwMFWmpBJK5LUcE_m3e1Qod2Ho_PGt5Kw80ZSn8h9NeaaRvw02Xow</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction</title><source>American Chemical Society Journals</source><creator>Zhao, Ziwei ; Xu, Xuanpan ; Wang, Hong-En</creator><creatorcontrib>Zhao, Ziwei ; Xu, Xuanpan ; Wang, Hong-En</creatorcontrib><description>Exploring novel anode materials plays a crucial role in further improving the overall electrochemical performance of rechargeable Li-ion batteries (LIBs) for emerging applications in large-scale energy storage. Vanadium dioxide (VO2) has a high theoretical capacity and low cost, possessing great potential as an alternative anode material for rechargeable LIBs. Compared to monoclinic VO2-M and metastable VO2-B, the electrochemical Li-ion storage capability of tetragonal rutile-type VO2-R (particularly in the nanoscale form) has been less refined, limiting its potential application in LIBs. Herein, a heterostructure nanocomposite, constructed by few-layered reduced graphene oxide (rGO) sheets covered by VO2-R nanoparticles (rGO/VO2-R), has been successfully synthesized by a controlled wet-chemical route. The resultant rGO/VO2-R composite exhibits good electrochemical properties with high capacity and superior rate and cycling performances owing to the effective combination of the high electrical conduction of the flexible rGO substrate and VO2-R nanoparticles with enhanced redox kinetics. First-principles simulations reveal that the formation of a graphene/VO2 heterostructure is energetically feasible. Further, such a heterostructure can benefit the electron/Li+ transfer and afford abundant sites for Li+ storage at the interface. The presented research can provide some new insights into the reasonable design and fabrication of carbon-related (nano)­composites with distinct phase and composition control for promising applications in rechargeable Li-ion batteries and supercapacitors.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.3c04428</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Batteries and Energy Storage</subject><ispartof>Energy &amp; fuels, 2024-03, Vol.38 (5), p.4689-4698</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6859-5683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.3c04428$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.3c04428$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Xu, Xuanpan</creatorcontrib><creatorcontrib>Wang, Hong-En</creatorcontrib><title>Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Exploring novel anode materials plays a crucial role in further improving the overall electrochemical performance of rechargeable Li-ion batteries (LIBs) for emerging applications in large-scale energy storage. Vanadium dioxide (VO2) has a high theoretical capacity and low cost, possessing great potential as an alternative anode material for rechargeable LIBs. Compared to monoclinic VO2-M and metastable VO2-B, the electrochemical Li-ion storage capability of tetragonal rutile-type VO2-R (particularly in the nanoscale form) has been less refined, limiting its potential application in LIBs. Herein, a heterostructure nanocomposite, constructed by few-layered reduced graphene oxide (rGO) sheets covered by VO2-R nanoparticles (rGO/VO2-R), has been successfully synthesized by a controlled wet-chemical route. The resultant rGO/VO2-R composite exhibits good electrochemical properties with high capacity and superior rate and cycling performances owing to the effective combination of the high electrical conduction of the flexible rGO substrate and VO2-R nanoparticles with enhanced redox kinetics. First-principles simulations reveal that the formation of a graphene/VO2 heterostructure is energetically feasible. Further, such a heterostructure can benefit the electron/Li+ transfer and afford abundant sites for Li+ storage at the interface. The presented research can provide some new insights into the reasonable design and fabrication of carbon-related (nano)­composites with distinct phase and composition control for promising applications in rechargeable Li-ion batteries and supercapacitors.</description><subject>Batteries and Energy Storage</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpN0MtKw0AYBeBBFKzVZ3BeIO1cksnMUkptC4GKl27Dn8k_TUqdkWQiuPMVfMU-iS124erAWZwDHyH3nE04E3wKtp-gx2775Qbc9xNpWZoKfUFGPBMsyZgwl2TEtM4TpkR6TW76fscYU1JnI7KZ-wa8xZo-9TjUwcIH2Da2n0iLNjbt8J6sgqcvMXSwRdp6CnQWGuzQR9ot1tPNWhy-f57pEiN2YTd4G9vgb8mVg32Pd-cck7fH-etsmRTrxWr2UCTAjYkJB3CVqS1IyCrUuaitkM663Bz7LBfa1DyVlUs1KqWNqxRwMFWmpBJK5LUcE_m3e1Qod2Ho_PGt5Kw80ZSn8h9NeaaRvw02Xow</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Zhao, Ziwei</creator><creator>Xu, Xuanpan</creator><creator>Wang, Hong-En</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-6859-5683</orcidid></search><sort><creationdate>20240307</creationdate><title>Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction</title><author>Zhao, Ziwei ; Xu, Xuanpan ; Wang, Hong-En</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a199t-1aafb9dca3a5be872dc23fcf79afb57289d143bf48e6689fb6a1a9b56362627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries and Energy Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ziwei</creatorcontrib><creatorcontrib>Xu, Xuanpan</creatorcontrib><creatorcontrib>Wang, Hong-En</creatorcontrib><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ziwei</au><au>Xu, Xuanpan</au><au>Wang, Hong-En</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>38</volume><issue>5</issue><spage>4689</spage><epage>4698</epage><pages>4689-4698</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Exploring novel anode materials plays a crucial role in further improving the overall electrochemical performance of rechargeable Li-ion batteries (LIBs) for emerging applications in large-scale energy storage. Vanadium dioxide (VO2) has a high theoretical capacity and low cost, possessing great potential as an alternative anode material for rechargeable LIBs. Compared to monoclinic VO2-M and metastable VO2-B, the electrochemical Li-ion storage capability of tetragonal rutile-type VO2-R (particularly in the nanoscale form) has been less refined, limiting its potential application in LIBs. Herein, a heterostructure nanocomposite, constructed by few-layered reduced graphene oxide (rGO) sheets covered by VO2-R nanoparticles (rGO/VO2-R), has been successfully synthesized by a controlled wet-chemical route. The resultant rGO/VO2-R composite exhibits good electrochemical properties with high capacity and superior rate and cycling performances owing to the effective combination of the high electrical conduction of the flexible rGO substrate and VO2-R nanoparticles with enhanced redox kinetics. First-principles simulations reveal that the formation of a graphene/VO2 heterostructure is energetically feasible. Further, such a heterostructure can benefit the electron/Li+ transfer and afford abundant sites for Li+ storage at the interface. The presented research can provide some new insights into the reasonable design and fabrication of carbon-related (nano)­composites with distinct phase and composition control for promising applications in rechargeable Li-ion batteries and supercapacitors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.3c04428</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6859-5683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2024-03, Vol.38 (5), p.4689-4698
issn 0887-0624
1520-5029
language eng
recordid cdi_acs_journals_10_1021_acs_energyfuels_3c04428
source American Chemical Society Journals
subjects Batteries and Energy Storage
title Enhanced Pseudocapacitive Lithium-Ion Storage in a Coherent rGO/VO2‑R Heterojunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Pseudocapacitive%20Lithium-Ion%20Storage%20in%20a%20Coherent%20rGO/VO2%E2%80%91R%20Heterojunction&rft.jtitle=Energy%20&%20fuels&rft.au=Zhao,%20Ziwei&rft.date=2024-03-07&rft.volume=38&rft.issue=5&rft.spage=4689&rft.epage=4698&rft.pages=4689-4698&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.3c04428&rft_dat=%3Cacs%3Ec789667906%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true