Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction

Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electroconductivity and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2022-10, Vol.36 (19), p.11584-11590
Hauptverfasser: Tang, Rui, Ying, Meihui, Zhang, Xingmo, Zheng, Rongkun, Huang, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11590
container_issue 19
container_start_page 11584
container_title Energy & fuels
container_volume 36
creator Tang, Rui
Ying, Meihui
Zhang, Xingmo
Zheng, Rongkun
Huang, Jun
description Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electroconductivity and sluggish surficial water oxidation kinetics. Here, we reported a Fe2O3/CoFe-LDH heterostructure electrocatalyst through a facile hydrothermal process. By in situ decorating CoFe-LDH with Fe2O3 nanospheres, a boosted electrocatalytic OER performance is evidenced from the Fe2O3/CoFe-LDH catalysts with an overpotential of 240 mV for the benchmarked current density and a Tafel slope of 70.3 mV dec–1. As a result of the uniquely matched energy band alignments between Fe2O3 and CoFe-LDH, a Fe2O3/CoFe-LDH interfacial type-II heterojunction is evidenced. As such, the heterojunction-induced charge transfer driving force greatly enhances the charge transfer capability of Fe2O3/CoFe-LDH, thus improving the OER performance. This work offers a novel approach toward enhancing the electron transfer kinetics of general semiconductor-based catalysts by rational heterojunction engineering.
doi_str_mv 10.1021/acs.energyfuels.2c01265
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_energyfuels_2c01265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b134823569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a199t-c7b795ca115a32ca7832d703713ae8aa1902534bb60772f3b0b5239ec8a02cbb3</originalsourceid><addsrcrecordid>eNpNkNFKwzAUQIMoOKffYH6g202yNO2j1M4NBgPR55Kkt7MjJNCmsn6A_2039-DTvRwu98Ah5JnBggFnS237BXrsDmMzoOsX3ALjqbwhMyY5JBJ4fktmkGUqgZSv7slD3x8BIBWZnJGfrY_YNdq22tENTns4Dt7GNvik9IfWI3ZY0zXyvVgWYY3JTo8X9BoG45BuxroLp7ZGWuio3dhH2oSOxi-kpUMbu2AvPLaW7k_jAT0tv4Mbzgb6jvqieiR3jXY9Pl3nnHyuy49ik-z2b9viZZdolucxscqoXFrNmNSCW60ywWsFQjGhMdPTEXApVsakoBRvhAEjucjRZhq4NUbMifj7O0WrjmHo_GSrGFTnktUZ_itZXUuKX7i1br4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction</title><source>American Chemical Society Journals</source><creator>Tang, Rui ; Ying, Meihui ; Zhang, Xingmo ; Zheng, Rongkun ; Huang, Jun</creator><creatorcontrib>Tang, Rui ; Ying, Meihui ; Zhang, Xingmo ; Zheng, Rongkun ; Huang, Jun</creatorcontrib><description>Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electroconductivity and sluggish surficial water oxidation kinetics. Here, we reported a Fe2O3/CoFe-LDH heterostructure electrocatalyst through a facile hydrothermal process. By in situ decorating CoFe-LDH with Fe2O3 nanospheres, a boosted electrocatalytic OER performance is evidenced from the Fe2O3/CoFe-LDH catalysts with an overpotential of 240 mV for the benchmarked current density and a Tafel slope of 70.3 mV dec–1. As a result of the uniquely matched energy band alignments between Fe2O3 and CoFe-LDH, a Fe2O3/CoFe-LDH interfacial type-II heterojunction is evidenced. As such, the heterojunction-induced charge transfer driving force greatly enhances the charge transfer capability of Fe2O3/CoFe-LDH, thus improving the OER performance. This work offers a novel approach toward enhancing the electron transfer kinetics of general semiconductor-based catalysts by rational heterojunction engineering.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.2c01265</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2022-10, Vol.36 (19), p.11584-11590</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7860-2023 ; 0000-0001-8704-605X ; 0000-0002-2545-8355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.2c01265$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.2c01265$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Ying, Meihui</creatorcontrib><creatorcontrib>Zhang, Xingmo</creatorcontrib><creatorcontrib>Zheng, Rongkun</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><title>Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electroconductivity and sluggish surficial water oxidation kinetics. Here, we reported a Fe2O3/CoFe-LDH heterostructure electrocatalyst through a facile hydrothermal process. By in situ decorating CoFe-LDH with Fe2O3 nanospheres, a boosted electrocatalytic OER performance is evidenced from the Fe2O3/CoFe-LDH catalysts with an overpotential of 240 mV for the benchmarked current density and a Tafel slope of 70.3 mV dec–1. As a result of the uniquely matched energy band alignments between Fe2O3 and CoFe-LDH, a Fe2O3/CoFe-LDH interfacial type-II heterojunction is evidenced. As such, the heterojunction-induced charge transfer driving force greatly enhances the charge transfer capability of Fe2O3/CoFe-LDH, thus improving the OER performance. This work offers a novel approach toward enhancing the electron transfer kinetics of general semiconductor-based catalysts by rational heterojunction engineering.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkNFKwzAUQIMoOKffYH6g202yNO2j1M4NBgPR55Kkt7MjJNCmsn6A_2039-DTvRwu98Ah5JnBggFnS237BXrsDmMzoOsX3ALjqbwhMyY5JBJ4fktmkGUqgZSv7slD3x8BIBWZnJGfrY_YNdq22tENTns4Dt7GNvik9IfWI3ZY0zXyvVgWYY3JTo8X9BoG45BuxroLp7ZGWuio3dhH2oSOxi-kpUMbu2AvPLaW7k_jAT0tv4Mbzgb6jvqieiR3jXY9Pl3nnHyuy49ik-z2b9viZZdolucxscqoXFrNmNSCW60ywWsFQjGhMdPTEXApVsakoBRvhAEjucjRZhq4NUbMifj7O0WrjmHo_GSrGFTnktUZ_itZXUuKX7i1br4</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Tang, Rui</creator><creator>Ying, Meihui</creator><creator>Zhang, Xingmo</creator><creator>Zheng, Rongkun</creator><creator>Huang, Jun</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-7860-2023</orcidid><orcidid>https://orcid.org/0000-0001-8704-605X</orcidid><orcidid>https://orcid.org/0000-0002-2545-8355</orcidid></search><sort><creationdate>20221006</creationdate><title>Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction</title><author>Tang, Rui ; Ying, Meihui ; Zhang, Xingmo ; Zheng, Rongkun ; Huang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a199t-c7b795ca115a32ca7832d703713ae8aa1902534bb60772f3b0b5239ec8a02cbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Ying, Meihui</creatorcontrib><creatorcontrib>Zhang, Xingmo</creatorcontrib><creatorcontrib>Zheng, Rongkun</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Rui</au><au>Ying, Meihui</au><au>Zhang, Xingmo</au><au>Zheng, Rongkun</au><au>Huang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2022-10-06</date><risdate>2022</risdate><volume>36</volume><issue>19</issue><spage>11584</spage><epage>11590</epage><pages>11584-11590</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Layered double hydroxide (LDH) materials have emerged as perspective anode catalysts for the electrocatalytic oxygen evolution reaction (OER) to substitute the high-price noble metal catalysts. However, the OER performance of LDH is unsatisfactory as a result of its limited electroconductivity and sluggish surficial water oxidation kinetics. Here, we reported a Fe2O3/CoFe-LDH heterostructure electrocatalyst through a facile hydrothermal process. By in situ decorating CoFe-LDH with Fe2O3 nanospheres, a boosted electrocatalytic OER performance is evidenced from the Fe2O3/CoFe-LDH catalysts with an overpotential of 240 mV for the benchmarked current density and a Tafel slope of 70.3 mV dec–1. As a result of the uniquely matched energy band alignments between Fe2O3 and CoFe-LDH, a Fe2O3/CoFe-LDH interfacial type-II heterojunction is evidenced. As such, the heterojunction-induced charge transfer driving force greatly enhances the charge transfer capability of Fe2O3/CoFe-LDH, thus improving the OER performance. This work offers a novel approach toward enhancing the electron transfer kinetics of general semiconductor-based catalysts by rational heterojunction engineering.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.2c01265</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7860-2023</orcidid><orcidid>https://orcid.org/0000-0001-8704-605X</orcidid><orcidid>https://orcid.org/0000-0002-2545-8355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2022-10, Vol.36 (19), p.11584-11590
issn 0887-0624
1520-5029
language eng
recordid cdi_acs_journals_10_1021_acs_energyfuels_2c01265
source American Chemical Society Journals
title Interfacial Heterojunction-Engineered Fe2O3/CoFe-Layered Double Hydroxide Catalyst for the Electrocatalytic Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Heterojunction-Engineered%20Fe2O3/CoFe-Layered%20Double%20Hydroxide%20Catalyst%20for%20the%20Electrocatalytic%20Oxygen%20Evolution%20Reaction&rft.jtitle=Energy%20&%20fuels&rft.au=Tang,%20Rui&rft.date=2022-10-06&rft.volume=36&rft.issue=19&rft.spage=11584&rft.epage=11590&rft.pages=11584-11590&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.2c01265&rft_dat=%3Cacs%3Eb134823569%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true