Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review

Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. However, available semiconductor materials are less efficient to promote CO2 conversion to energy-efficient fuels. In the current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2021-07, Vol.35 (13), p.10374-10404
Hauptverfasser: Tahir, Muhammad, Ali Khan, Azmat, Tasleem, Sehar, Mansoor, Rehan, Fan, Wei Keen
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10404
container_issue 13
container_start_page 10374
container_title Energy & fuels
container_volume 35
creator Tahir, Muhammad
Ali Khan, Azmat
Tasleem, Sehar
Mansoor, Rehan
Fan, Wei Keen
description Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. However, available semiconductor materials are less efficient to promote CO2 conversion to energy-efficient fuels. In the current development, titanium carbide (Ti3C2) MXene as a co-catalyst with a high conductivity, abundant active sites, and large specific surface area, is a preeminent candidate to promote semiconductor photoactivity. This review provides an overview in the utilization of Ti3C2 as a promising co-catalyst for maximizing CO2 reduction efficiency and product selectivity. In the mainstream, developments in Ti3C2 MXene-based composites for CO2 conversion through different processes, such as CO2 reduction with water, photocatalytic CO2 methanation, and natural gas flaring reduction to synthesis gas, have been discussed. The review also gives an overview of the factors crucial to affect photocatalytic properties of Ti3C2, such as morphological, electrical, optical, and luminescence characteristics. The fundamental mechanism of Ti3C2T x for photocatalytic reduction of CO2 and strategies to improve the photocatalytic performance are also described. The great emphasis is given on in situ TiO2 production and hybridization with other semiconductors to obtain an efficient co-catalyst for selective CO2 reduction. Lastly, conclusions and future prospectives to further explore in the field of energy and fuels are included.
doi_str_mv 10.1021/acs.energyfuels.1c00958
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_energyfuels_1c00958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d195545655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a195t-ad6c7fe8ca92fe9e52204ecec1c2a5caa093f6468db9a46b1ac627c8c5e5b8303</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhIMoWKu_wXfUw9aX7Gab9VaWVoVKi1TwtrxNk5rSbmCTVnryr7vVHjwNDMPM8DF2y3HAUfAH0mFgGtOuDnZnNmHANWIh1RnrcSkwkSiKc9ZDpYYJ5iK7ZFchrBExT5Xsse-Fi9S43RZKamu3NHC3cGkp7uH1o2sFCkAwb_3WBdesoPSJpkibQ4hgfQvzTx_9nxOdhnImukizN21wvoHoYfz7LBlb67QzTYTJ8eQjjODN7J35umYXljbB3Jy0z94n40X5nExnTy_laJoQL2RMaJnroTVKUyGsKYwUAjOjjeZakNREWKQ2z3K1rAvK8pqTzsVQKy2NrFWKaZ-lf70drmrtd23TrVUcqyPD6mj-Y1idGKY_LgZrbg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review</title><source>ACS Publications</source><creator>Tahir, Muhammad ; Ali Khan, Azmat ; Tasleem, Sehar ; Mansoor, Rehan ; Fan, Wei Keen</creator><creatorcontrib>Tahir, Muhammad ; Ali Khan, Azmat ; Tasleem, Sehar ; Mansoor, Rehan ; Fan, Wei Keen</creatorcontrib><description>Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. However, available semiconductor materials are less efficient to promote CO2 conversion to energy-efficient fuels. In the current development, titanium carbide (Ti3C2) MXene as a co-catalyst with a high conductivity, abundant active sites, and large specific surface area, is a preeminent candidate to promote semiconductor photoactivity. This review provides an overview in the utilization of Ti3C2 as a promising co-catalyst for maximizing CO2 reduction efficiency and product selectivity. In the mainstream, developments in Ti3C2 MXene-based composites for CO2 conversion through different processes, such as CO2 reduction with water, photocatalytic CO2 methanation, and natural gas flaring reduction to synthesis gas, have been discussed. The review also gives an overview of the factors crucial to affect photocatalytic properties of Ti3C2, such as morphological, electrical, optical, and luminescence characteristics. The fundamental mechanism of Ti3C2T x for photocatalytic reduction of CO2 and strategies to improve the photocatalytic performance are also described. The great emphasis is given on in situ TiO2 production and hybridization with other semiconductors to obtain an efficient co-catalyst for selective CO2 reduction. Lastly, conclusions and future prospectives to further explore in the field of energy and fuels are included.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.1c00958</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Energy &amp; fuels, 2021-07, Vol.35 (13), p.10374-10404</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2937-5645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.1c00958$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00958$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Tahir, Muhammad</creatorcontrib><creatorcontrib>Ali Khan, Azmat</creatorcontrib><creatorcontrib>Tasleem, Sehar</creatorcontrib><creatorcontrib>Mansoor, Rehan</creatorcontrib><creatorcontrib>Fan, Wei Keen</creatorcontrib><title>Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. However, available semiconductor materials are less efficient to promote CO2 conversion to energy-efficient fuels. In the current development, titanium carbide (Ti3C2) MXene as a co-catalyst with a high conductivity, abundant active sites, and large specific surface area, is a preeminent candidate to promote semiconductor photoactivity. This review provides an overview in the utilization of Ti3C2 as a promising co-catalyst for maximizing CO2 reduction efficiency and product selectivity. In the mainstream, developments in Ti3C2 MXene-based composites for CO2 conversion through different processes, such as CO2 reduction with water, photocatalytic CO2 methanation, and natural gas flaring reduction to synthesis gas, have been discussed. The review also gives an overview of the factors crucial to affect photocatalytic properties of Ti3C2, such as morphological, electrical, optical, and luminescence characteristics. The fundamental mechanism of Ti3C2T x for photocatalytic reduction of CO2 and strategies to improve the photocatalytic performance are also described. The great emphasis is given on in situ TiO2 production and hybridization with other semiconductors to obtain an efficient co-catalyst for selective CO2 reduction. Lastly, conclusions and future prospectives to further explore in the field of energy and fuels are included.</description><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEFLAzEUhIMoWKu_wXfUw9aX7Gab9VaWVoVKi1TwtrxNk5rSbmCTVnryr7vVHjwNDMPM8DF2y3HAUfAH0mFgGtOuDnZnNmHANWIh1RnrcSkwkSiKc9ZDpYYJ5iK7ZFchrBExT5Xsse-Fi9S43RZKamu3NHC3cGkp7uH1o2sFCkAwb_3WBdesoPSJpkibQ4hgfQvzTx_9nxOdhnImukizN21wvoHoYfz7LBlb67QzTYTJ8eQjjODN7J35umYXljbB3Jy0z94n40X5nExnTy_laJoQL2RMaJnroTVKUyGsKYwUAjOjjeZakNREWKQ2z3K1rAvK8pqTzsVQKy2NrFWKaZ-lf70drmrtd23TrVUcqyPD6mj-Y1idGKY_LgZrbg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tahir, Muhammad</creator><creator>Ali Khan, Azmat</creator><creator>Tasleem, Sehar</creator><creator>Mansoor, Rehan</creator><creator>Fan, Wei Keen</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2937-5645</orcidid></search><sort><creationdate>20210701</creationdate><title>Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review</title><author>Tahir, Muhammad ; Ali Khan, Azmat ; Tasleem, Sehar ; Mansoor, Rehan ; Fan, Wei Keen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a195t-ad6c7fe8ca92fe9e52204ecec1c2a5caa093f6468db9a46b1ac627c8c5e5b8303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tahir, Muhammad</creatorcontrib><creatorcontrib>Ali Khan, Azmat</creatorcontrib><creatorcontrib>Tasleem, Sehar</creatorcontrib><creatorcontrib>Mansoor, Rehan</creatorcontrib><creatorcontrib>Fan, Wei Keen</creatorcontrib><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tahir, Muhammad</au><au>Ali Khan, Azmat</au><au>Tasleem, Sehar</au><au>Mansoor, Rehan</au><au>Fan, Wei Keen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>35</volume><issue>13</issue><spage>10374</spage><epage>10404</epage><pages>10374-10404</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. However, available semiconductor materials are less efficient to promote CO2 conversion to energy-efficient fuels. In the current development, titanium carbide (Ti3C2) MXene as a co-catalyst with a high conductivity, abundant active sites, and large specific surface area, is a preeminent candidate to promote semiconductor photoactivity. This review provides an overview in the utilization of Ti3C2 as a promising co-catalyst for maximizing CO2 reduction efficiency and product selectivity. In the mainstream, developments in Ti3C2 MXene-based composites for CO2 conversion through different processes, such as CO2 reduction with water, photocatalytic CO2 methanation, and natural gas flaring reduction to synthesis gas, have been discussed. The review also gives an overview of the factors crucial to affect photocatalytic properties of Ti3C2, such as morphological, electrical, optical, and luminescence characteristics. The fundamental mechanism of Ti3C2T x for photocatalytic reduction of CO2 and strategies to improve the photocatalytic performance are also described. The great emphasis is given on in situ TiO2 production and hybridization with other semiconductors to obtain an efficient co-catalyst for selective CO2 reduction. Lastly, conclusions and future prospectives to further explore in the field of energy and fuels are included.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.1c00958</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2937-5645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2021-07, Vol.35 (13), p.10374-10404
issn 0887-0624
1520-5029
language eng ; jpn
recordid cdi_acs_journals_10_1021_acs_energyfuels_1c00958
source ACS Publications
title Titanium Carbide (Ti3C2) MXene as a Promising Co-catalyst for Photocatalytic CO2 Conversion to Energy-Efficient Fuels: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20Carbide%20(Ti3C2)%20MXene%20as%20a%20Promising%20Co-catalyst%20for%20Photocatalytic%20CO2%20Conversion%20to%20Energy-Efficient%20Fuels:%20A%20Review&rft.jtitle=Energy%20&%20fuels&rft.au=Tahir,%20Muhammad&rft.date=2021-07-01&rft.volume=35&rft.issue=13&rft.spage=10374&rft.epage=10404&rft.pages=10374-10404&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.1c00958&rft_dat=%3Cacs%3Ed195545655%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true