Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells

Designing a high-performance electrocatalyst is very important for producing energy systems such as glucose–oxygen fuel cells (GFCs). Here, we report the preparation of a nanocomposite material consisting of different weight percentages of reduced graphene oxide-supported (5, 10, and 20 wt %) cobalt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2020-10, Vol.34 (10), p.12984-12994
Hauptverfasser: Madhura, T. Ravindran, Gnana Kumar, Georgepeter, Ramaraj, Ramasamy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12994
container_issue 10
container_start_page 12984
container_title Energy & fuels
container_volume 34
creator Madhura, T. Ravindran
Gnana Kumar, Georgepeter
Ramaraj, Ramasamy
description Designing a high-performance electrocatalyst is very important for producing energy systems such as glucose–oxygen fuel cells (GFCs). Here, we report the preparation of a nanocomposite material consisting of different weight percentages of reduced graphene oxide-supported (5, 10, and 20 wt %) cobalt oxide nanoparticles (rGO–Co3O4). The corresponding modified electrodes exhibited bifunctional electrocatalytic behavior toward both glucose oxidation and oxygen reduction reaction (ORR). The rGO–Co3O4 nanocomposite material is prepared and characterized by thermogravimetry analysis, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, selected area electron diffraction, the Brunauer–Emmett–Teller method, the Barret–Joyner–Halenda method, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and electrochemical analysis. Among different weight percentages of rGO, 10 wt % GO in the rGO–Co3O4 nanocomposite-modified electrode shows stable electrooxidation of glucose with a rapid response time of 1 s with a 0.4 μM limit of detection and a 1008 μA mM–1 cm–2 sensitivity. In addition, rGO–Co3O4 (10 wt % GO)-modified electrodes show less negative potential with a large kinetic current and better catalytic durability for ORR. Thus, rGO–Co3O4 (10 wt % GO) is employed as a bifunctional catalyst in cost-effective GFCs and obtains a power density output of 0.7319 mW cm–2.
doi_str_mv 10.1021/acs.energyfuels.0c02287
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_energyfuels_0c02287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d038399383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a129t-74a6866ee633818e4d6cb892eb15c138329044729c61f2b009497ec22bafdb6f3</originalsourceid><addsrcrecordid>eNpNkN9KwzAYxYMoOKfPYF6g80vSpumllm0Kw4J_rkuafp0dsSlJC9ud7-Ab-iR2uAuvDpwDPw4_Qm4ZLBhwdqdNWGCHfntoRrRhAQY4V-kZmbGEQ5QAz87JDJRKI5A8viRXIewAQAqVzIh_wXo0WNO11_3HxKHFvq0xeh373vlhGnInipg-684Z99m70A5IH9pm7MzQuk5burRoBu-MHrQ9hCHQxnm6tqNxAX--vov9YYsdXU3naI7Whmty0Wgb8OaUc_K-Wr7lj9GmWD_l95tIM54NURprqaRElEIopjCupalUxrFiiWFCCZ5BHKc8M5I1vALI4ixFw3mlm7qSjZgT8cedDJU7N_rpbCgZlEdt5bH8p608aRO_UKdodw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells</title><source>ACS Publications</source><creator>Madhura, T. Ravindran ; Gnana Kumar, Georgepeter ; Ramaraj, Ramasamy</creator><creatorcontrib>Madhura, T. Ravindran ; Gnana Kumar, Georgepeter ; Ramaraj, Ramasamy</creatorcontrib><description>Designing a high-performance electrocatalyst is very important for producing energy systems such as glucose–oxygen fuel cells (GFCs). Here, we report the preparation of a nanocomposite material consisting of different weight percentages of reduced graphene oxide-supported (5, 10, and 20 wt %) cobalt oxide nanoparticles (rGO–Co3O4). The corresponding modified electrodes exhibited bifunctional electrocatalytic behavior toward both glucose oxidation and oxygen reduction reaction (ORR). The rGO–Co3O4 nanocomposite material is prepared and characterized by thermogravimetry analysis, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, selected area electron diffraction, the Brunauer–Emmett–Teller method, the Barret–Joyner–Halenda method, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and electrochemical analysis. Among different weight percentages of rGO, 10 wt % GO in the rGO–Co3O4 nanocomposite-modified electrode shows stable electrooxidation of glucose with a rapid response time of 1 s with a 0.4 μM limit of detection and a 1008 μA mM–1 cm–2 sensitivity. In addition, rGO–Co3O4 (10 wt % GO)-modified electrodes show less negative potential with a large kinetic current and better catalytic durability for ORR. Thus, rGO–Co3O4 (10 wt % GO) is employed as a bifunctional catalyst in cost-effective GFCs and obtains a power density output of 0.7319 mW cm–2.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.0c02287</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Fuel Cells</subject><ispartof>Energy &amp; fuels, 2020-10, Vol.34 (10), p.12984-12994</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2242-5483 ; 0000-0001-7011-3498</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.0c02287$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.0c02287$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Madhura, T. Ravindran</creatorcontrib><creatorcontrib>Gnana Kumar, Georgepeter</creatorcontrib><creatorcontrib>Ramaraj, Ramasamy</creatorcontrib><title>Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>Designing a high-performance electrocatalyst is very important for producing energy systems such as glucose–oxygen fuel cells (GFCs). Here, we report the preparation of a nanocomposite material consisting of different weight percentages of reduced graphene oxide-supported (5, 10, and 20 wt %) cobalt oxide nanoparticles (rGO–Co3O4). The corresponding modified electrodes exhibited bifunctional electrocatalytic behavior toward both glucose oxidation and oxygen reduction reaction (ORR). The rGO–Co3O4 nanocomposite material is prepared and characterized by thermogravimetry analysis, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, selected area electron diffraction, the Brunauer–Emmett–Teller method, the Barret–Joyner–Halenda method, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and electrochemical analysis. Among different weight percentages of rGO, 10 wt % GO in the rGO–Co3O4 nanocomposite-modified electrode shows stable electrooxidation of glucose with a rapid response time of 1 s with a 0.4 μM limit of detection and a 1008 μA mM–1 cm–2 sensitivity. In addition, rGO–Co3O4 (10 wt % GO)-modified electrodes show less negative potential with a large kinetic current and better catalytic durability for ORR. Thus, rGO–Co3O4 (10 wt % GO) is employed as a bifunctional catalyst in cost-effective GFCs and obtains a power density output of 0.7319 mW cm–2.</description><subject>Fuel Cells</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkN9KwzAYxYMoOKfPYF6g80vSpumllm0Kw4J_rkuafp0dsSlJC9ud7-Ab-iR2uAuvDpwDPw4_Qm4ZLBhwdqdNWGCHfntoRrRhAQY4V-kZmbGEQ5QAz87JDJRKI5A8viRXIewAQAqVzIh_wXo0WNO11_3HxKHFvq0xeh373vlhGnInipg-684Z99m70A5IH9pm7MzQuk5burRoBu-MHrQ9hCHQxnm6tqNxAX--vov9YYsdXU3naI7Whmty0Wgb8OaUc_K-Wr7lj9GmWD_l95tIM54NURprqaRElEIopjCupalUxrFiiWFCCZ5BHKc8M5I1vALI4ixFw3mlm7qSjZgT8cedDJU7N_rpbCgZlEdt5bH8p608aRO_UKdodw</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Madhura, T. Ravindran</creator><creator>Gnana Kumar, Georgepeter</creator><creator>Ramaraj, Ramasamy</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2242-5483</orcidid><orcidid>https://orcid.org/0000-0001-7011-3498</orcidid></search><sort><creationdate>20201015</creationdate><title>Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells</title><author>Madhura, T. Ravindran ; Gnana Kumar, Georgepeter ; Ramaraj, Ramasamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a129t-74a6866ee633818e4d6cb892eb15c138329044729c61f2b009497ec22bafdb6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Fuel Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhura, T. Ravindran</creatorcontrib><creatorcontrib>Gnana Kumar, Georgepeter</creatorcontrib><creatorcontrib>Ramaraj, Ramasamy</creatorcontrib><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhura, T. Ravindran</au><au>Gnana Kumar, Georgepeter</au><au>Ramaraj, Ramasamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>34</volume><issue>10</issue><spage>12984</spage><epage>12994</epage><pages>12984-12994</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>Designing a high-performance electrocatalyst is very important for producing energy systems such as glucose–oxygen fuel cells (GFCs). Here, we report the preparation of a nanocomposite material consisting of different weight percentages of reduced graphene oxide-supported (5, 10, and 20 wt %) cobalt oxide nanoparticles (rGO–Co3O4). The corresponding modified electrodes exhibited bifunctional electrocatalytic behavior toward both glucose oxidation and oxygen reduction reaction (ORR). The rGO–Co3O4 nanocomposite material is prepared and characterized by thermogravimetry analysis, X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, selected area electron diffraction, the Brunauer–Emmett–Teller method, the Barret–Joyner–Halenda method, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and electrochemical analysis. Among different weight percentages of rGO, 10 wt % GO in the rGO–Co3O4 nanocomposite-modified electrode shows stable electrooxidation of glucose with a rapid response time of 1 s with a 0.4 μM limit of detection and a 1008 μA mM–1 cm–2 sensitivity. In addition, rGO–Co3O4 (10 wt % GO)-modified electrodes show less negative potential with a large kinetic current and better catalytic durability for ORR. Thus, rGO–Co3O4 (10 wt % GO) is employed as a bifunctional catalyst in cost-effective GFCs and obtains a power density output of 0.7319 mW cm–2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.0c02287</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2242-5483</orcidid><orcidid>https://orcid.org/0000-0001-7011-3498</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2020-10, Vol.34 (10), p.12984-12994
issn 0887-0624
1520-5029
language eng
recordid cdi_acs_journals_10_1021_acs_energyfuels_0c02287
source ACS Publications
subjects Fuel Cells
title Reduced Graphene Oxide-Supported Co3O4 Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20Graphene%20Oxide-Supported%20Co3O4%20Nanocomposite%20Bifunctional%20Electrocatalysts%20for%20Glucose%E2%80%93Oxygen%20Fuel%20Cells&rft.jtitle=Energy%20&%20fuels&rft.au=Madhura,%20T.%20Ravindran&rft.date=2020-10-15&rft.volume=34&rft.issue=10&rft.spage=12984&rft.epage=12994&rft.pages=12984-12994&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.0c02287&rft_dat=%3Cacs%3Ed038399383%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true