Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase

Silicon-based anodes for Li-ion batteries have been gaining a great deal of attention due to their high theoretical gravimetric energy density. Approaches for overcoming the challenge of pulverization associated with Si-based electrodes are required for efficient, reversible, and stable operation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-09, Vol.31 (17), p.6578-6589
Hauptverfasser: Sayed, Sayed Youssef, Kalisvaart, W. Peter, Olsen, Brian C, Luber, Erik J, Xie, Hezhen, Buriak, Jillian M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6589
container_issue 17
container_start_page 6578
container_title Chemistry of materials
container_volume 31
creator Sayed, Sayed Youssef
Kalisvaart, W. Peter
Olsen, Brian C
Luber, Erik J
Xie, Hezhen
Buriak, Jillian M
description Silicon-based anodes for Li-ion batteries have been gaining a great deal of attention due to their high theoretical gravimetric energy density. Approaches for overcoming the challenge of pulverization associated with Si-based electrodes are required for efficient, reversible, and stable operation of such high energy batteries. This study focuses on addressing the source of pulverization of amorphous silicon films upon cycling, which is typically attributed to the formation of the c-Li3.75Si phase. Cross-sectional samples prepared by focused-ion beam milling revealed fractured sponge-like silicon structures after 150 cycles at a lithiation cutoff voltage of 5 mVLi, at which the c-Li3.75Si phase forms. Cycling at a higher lithiation cutoff voltage, 50 mVLi, however, resulted in a film with a higher degree of integrity, along with the absence of the c-Li3.75Si phase. These results clearly verify and underscore the deleterious effects of the c-Li3.75Si phase. Alternating carbon and silicon layers results in suppression of the formation of the c-Li3.75Si phase to a degree dependent upon the relative thicknesses of both the silicon and carbon layers. Best results were observed for multilayers of 8 nm Si/4 nm C, with which no evidence for the c-Li3.75Si phase up to 149 cycles was observed. Carbon interlayers were also found to beneficially lower the relative irreversible capacity loss due to solid-electrolyte interphase formation and associated electrical disconnection.
doi_str_mv 10.1021/acs.chemmater.9b00389
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_9b00389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a584014789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-424d5e516a3fa02406ad930d78380c878698ec978e5eec3dd0a0d78123666e953</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqVwBCRfIGFsx469rCoKSEUgBdaRa0-JqzSp7GTBjitwRU5CKipW8zUzf77mEXLLIGfA2Z11KXcN7vd2wJibDYDQ5ozMmOSQSQB-TmagTZkVpVSX5CqlHQCbrHpGmkU7mTo7hO6DVqENru-o7Txd2riZ5PPYDqG1nxizaoijG8aIni663mOi1Xg4REyJrvo4hYdpv9_SoUHqfr6-10HkpawCfW1swmtysbVtwptTnZP31f3b8jFbvzw8LRfrzHIlhqzghZcombJia4EXoKw3AnyphQanS62MRmdKjRLRCe_BHoeMC6UUGinmhP3dnajUu36cfmtTzaA-oqqPzX9U9QmV-AVEu2HF</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase</title><source>American Chemical Society Journals</source><creator>Sayed, Sayed Youssef ; Kalisvaart, W. Peter ; Olsen, Brian C ; Luber, Erik J ; Xie, Hezhen ; Buriak, Jillian M</creator><creatorcontrib>Sayed, Sayed Youssef ; Kalisvaart, W. Peter ; Olsen, Brian C ; Luber, Erik J ; Xie, Hezhen ; Buriak, Jillian M</creatorcontrib><description>Silicon-based anodes for Li-ion batteries have been gaining a great deal of attention due to their high theoretical gravimetric energy density. Approaches for overcoming the challenge of pulverization associated with Si-based electrodes are required for efficient, reversible, and stable operation of such high energy batteries. This study focuses on addressing the source of pulverization of amorphous silicon films upon cycling, which is typically attributed to the formation of the c-Li3.75Si phase. Cross-sectional samples prepared by focused-ion beam milling revealed fractured sponge-like silicon structures after 150 cycles at a lithiation cutoff voltage of 5 mVLi, at which the c-Li3.75Si phase forms. Cycling at a higher lithiation cutoff voltage, 50 mVLi, however, resulted in a film with a higher degree of integrity, along with the absence of the c-Li3.75Si phase. These results clearly verify and underscore the deleterious effects of the c-Li3.75Si phase. Alternating carbon and silicon layers results in suppression of the formation of the c-Li3.75Si phase to a degree dependent upon the relative thicknesses of both the silicon and carbon layers. Best results were observed for multilayers of 8 nm Si/4 nm C, with which no evidence for the c-Li3.75Si phase up to 149 cycles was observed. Carbon interlayers were also found to beneficially lower the relative irreversible capacity loss due to solid-electrolyte interphase formation and associated electrical disconnection.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b00389</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2019-09, Vol.31 (17), p.6578-6589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1228-906X ; 0000-0002-9567-4328 ; 0000-0003-1575-676X ; 0000-0003-1623-0102 ; 0000-0001-9275-9169 ; 0000-0001-9758-3641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b00389$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b00389$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Sayed, Sayed Youssef</creatorcontrib><creatorcontrib>Kalisvaart, W. Peter</creatorcontrib><creatorcontrib>Olsen, Brian C</creatorcontrib><creatorcontrib>Luber, Erik J</creatorcontrib><creatorcontrib>Xie, Hezhen</creatorcontrib><creatorcontrib>Buriak, Jillian M</creatorcontrib><title>Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Silicon-based anodes for Li-ion batteries have been gaining a great deal of attention due to their high theoretical gravimetric energy density. Approaches for overcoming the challenge of pulverization associated with Si-based electrodes are required for efficient, reversible, and stable operation of such high energy batteries. This study focuses on addressing the source of pulverization of amorphous silicon films upon cycling, which is typically attributed to the formation of the c-Li3.75Si phase. Cross-sectional samples prepared by focused-ion beam milling revealed fractured sponge-like silicon structures after 150 cycles at a lithiation cutoff voltage of 5 mVLi, at which the c-Li3.75Si phase forms. Cycling at a higher lithiation cutoff voltage, 50 mVLi, however, resulted in a film with a higher degree of integrity, along with the absence of the c-Li3.75Si phase. These results clearly verify and underscore the deleterious effects of the c-Li3.75Si phase. Alternating carbon and silicon layers results in suppression of the formation of the c-Li3.75Si phase to a degree dependent upon the relative thicknesses of both the silicon and carbon layers. Best results were observed for multilayers of 8 nm Si/4 nm C, with which no evidence for the c-Li3.75Si phase up to 149 cycles was observed. Carbon interlayers were also found to beneficially lower the relative irreversible capacity loss due to solid-electrolyte interphase formation and associated electrical disconnection.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFOwzAQRS0EEqVwBCRfIGFsx469rCoKSEUgBdaRa0-JqzSp7GTBjitwRU5CKipW8zUzf77mEXLLIGfA2Z11KXcN7vd2wJibDYDQ5ozMmOSQSQB-TmagTZkVpVSX5CqlHQCbrHpGmkU7mTo7hO6DVqENru-o7Txd2riZ5PPYDqG1nxizaoijG8aIni663mOi1Xg4REyJrvo4hYdpv9_SoUHqfr6-10HkpawCfW1swmtysbVtwptTnZP31f3b8jFbvzw8LRfrzHIlhqzghZcombJia4EXoKw3AnyphQanS62MRmdKjRLRCe_BHoeMC6UUGinmhP3dnajUu36cfmtTzaA-oqqPzX9U9QmV-AVEu2HF</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Sayed, Sayed Youssef</creator><creator>Kalisvaart, W. Peter</creator><creator>Olsen, Brian C</creator><creator>Luber, Erik J</creator><creator>Xie, Hezhen</creator><creator>Buriak, Jillian M</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-1228-906X</orcidid><orcidid>https://orcid.org/0000-0002-9567-4328</orcidid><orcidid>https://orcid.org/0000-0003-1575-676X</orcidid><orcidid>https://orcid.org/0000-0003-1623-0102</orcidid><orcidid>https://orcid.org/0000-0001-9275-9169</orcidid><orcidid>https://orcid.org/0000-0001-9758-3641</orcidid></search><sort><creationdate>20190910</creationdate><title>Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase</title><author>Sayed, Sayed Youssef ; Kalisvaart, W. Peter ; Olsen, Brian C ; Luber, Erik J ; Xie, Hezhen ; Buriak, Jillian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-424d5e516a3fa02406ad930d78380c878698ec978e5eec3dd0a0d78123666e953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sayed, Sayed Youssef</creatorcontrib><creatorcontrib>Kalisvaart, W. Peter</creatorcontrib><creatorcontrib>Olsen, Brian C</creatorcontrib><creatorcontrib>Luber, Erik J</creatorcontrib><creatorcontrib>Xie, Hezhen</creatorcontrib><creatorcontrib>Buriak, Jillian M</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sayed, Sayed Youssef</au><au>Kalisvaart, W. Peter</au><au>Olsen, Brian C</au><au>Luber, Erik J</au><au>Xie, Hezhen</au><au>Buriak, Jillian M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>31</volume><issue>17</issue><spage>6578</spage><epage>6589</epage><pages>6578-6589</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Silicon-based anodes for Li-ion batteries have been gaining a great deal of attention due to their high theoretical gravimetric energy density. Approaches for overcoming the challenge of pulverization associated with Si-based electrodes are required for efficient, reversible, and stable operation of such high energy batteries. This study focuses on addressing the source of pulverization of amorphous silicon films upon cycling, which is typically attributed to the formation of the c-Li3.75Si phase. Cross-sectional samples prepared by focused-ion beam milling revealed fractured sponge-like silicon structures after 150 cycles at a lithiation cutoff voltage of 5 mVLi, at which the c-Li3.75Si phase forms. Cycling at a higher lithiation cutoff voltage, 50 mVLi, however, resulted in a film with a higher degree of integrity, along with the absence of the c-Li3.75Si phase. These results clearly verify and underscore the deleterious effects of the c-Li3.75Si phase. Alternating carbon and silicon layers results in suppression of the formation of the c-Li3.75Si phase to a degree dependent upon the relative thicknesses of both the silicon and carbon layers. Best results were observed for multilayers of 8 nm Si/4 nm C, with which no evidence for the c-Li3.75Si phase up to 149 cycles was observed. Carbon interlayers were also found to beneficially lower the relative irreversible capacity loss due to solid-electrolyte interphase formation and associated electrical disconnection.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b00389</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1228-906X</orcidid><orcidid>https://orcid.org/0000-0002-9567-4328</orcidid><orcidid>https://orcid.org/0000-0003-1575-676X</orcidid><orcidid>https://orcid.org/0000-0003-1623-0102</orcidid><orcidid>https://orcid.org/0000-0001-9275-9169</orcidid><orcidid>https://orcid.org/0000-0001-9758-3641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-09, Vol.31 (17), p.6578-6589
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_9b00389
source American Chemical Society Journals
title Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c‑Li3.75Si Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternating%20Silicon%20and%20Carbon%20Multilayer-Structured%20Anodes%20Suppress%20Formation%20of%20the%20c%E2%80%91Li3.75Si%20Phase&rft.jtitle=Chemistry%20of%20materials&rft.au=Sayed,%20Sayed%20Youssef&rft.date=2019-09-10&rft.volume=31&rft.issue=17&rft.spage=6578&rft.epage=6589&rft.pages=6578-6589&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b00389&rft_dat=%3Cacs%3Ea584014789%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true