The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals

Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-04, Vol.29 (8), p.3644-3652
Hauptverfasser: Butkus, Justinas, Vashishtha, Parth, Chen, Kai, Gallaher, Joseph K, Prasad, Shyamal K. K, Metin, Dani Z, Laufersky, Geoffry, Gaston, Nicola, Halpert, Jonathan E, Hodgkiss, Justin M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3652
container_issue 8
container_start_page 3644
container_title Chemistry of materials
container_volume 29
creator Butkus, Justinas
Vashishtha, Parth
Chen, Kai
Gallaher, Joseph K
Prasad, Shyamal K. K
Metin, Dani Z
Laufersky, Geoffry
Gaston, Nicola
Halpert, Jonathan E
Hodgkiss, Justin M
description Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? Here, we report an ultrafast transient absorption study of cubic CsPbBr3 NCs as a function of size, compared with the bulk material. For NCs above ∼7 nm edge length, spectral signatures are similar to the bulk material–characterized by state-filling with uncorrelated charges–but discrete new kinetic components emerge at high fluence due to bimolecular recombination occurring in a discrete volume. Only for the smallest NCs (∼4 nm edge length) are strong quantum confinement effects manifest in TA spectral dynamics; focusing toward discrete energy states, enhanced bandgap renormalization energy, and departure from a Boltzmann statistical carrier cooling. At high fluence, we find that a hot-phonon bottleneck effect slows carrier cooling, but this appears to be intrinsic to the material, rather than size dependent. Overall, we find that the smallest NCs are understood in the framework of quantum confinement, however for the widely used NCs with edge lengths >7 nm the photophysics of bulk lead halide perovskites are a better point of reference.
doi_str_mv 10.1021/acs.chemmater.7b00478
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_7b00478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a036437619</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-5019b63da0af3f91a7e6bffae956e0e37dd279bed0f30af1cd43508f7baf993d3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoWKc_QcgfaL1p2qZ51DI3YeiE-VzS5oZ1rgk06cB_b4bDpwOXc-499yPkkUHGIGdPqvdZv8dxVAGnTHQAhaivSMLKHNISIL8mCdRSpIUoq1ty5_0BgMVonZDVbo90eXLHOQzOUmfo56xsmEfaOGsGiyPaQAdLG7_tXiZOtzi5k_8eAtJ3ZV0__figjv6e3Jgo-HDRBfl6Xe6adbr5WL01z5tU5RUPsQ2TXcW1AmW4kUwJrDpjFMqyQkAutM6F7FCD4dHCel3wEmojOmWk5JovCPvbG59uD26ebLzWMmjPJNrz8J9EeyHBfwHbqlcU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals</title><source>ACS Publications</source><creator>Butkus, Justinas ; Vashishtha, Parth ; Chen, Kai ; Gallaher, Joseph K ; Prasad, Shyamal K. K ; Metin, Dani Z ; Laufersky, Geoffry ; Gaston, Nicola ; Halpert, Jonathan E ; Hodgkiss, Justin M</creator><creatorcontrib>Butkus, Justinas ; Vashishtha, Parth ; Chen, Kai ; Gallaher, Joseph K ; Prasad, Shyamal K. K ; Metin, Dani Z ; Laufersky, Geoffry ; Gaston, Nicola ; Halpert, Jonathan E ; Hodgkiss, Justin M</creatorcontrib><description>Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? Here, we report an ultrafast transient absorption study of cubic CsPbBr3 NCs as a function of size, compared with the bulk material. For NCs above ∼7 nm edge length, spectral signatures are similar to the bulk material–characterized by state-filling with uncorrelated charges–but discrete new kinetic components emerge at high fluence due to bimolecular recombination occurring in a discrete volume. Only for the smallest NCs (∼4 nm edge length) are strong quantum confinement effects manifest in TA spectral dynamics; focusing toward discrete energy states, enhanced bandgap renormalization energy, and departure from a Boltzmann statistical carrier cooling. At high fluence, we find that a hot-phonon bottleneck effect slows carrier cooling, but this appears to be intrinsic to the material, rather than size dependent. Overall, we find that the smallest NCs are understood in the framework of quantum confinement, however for the widely used NCs with edge lengths &gt;7 nm the photophysics of bulk lead halide perovskites are a better point of reference.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b00478</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2017-04, Vol.29 (8), p.3644-3652</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9629-8213 ; 0000-0003-2365-2610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b00478$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b00478$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Butkus, Justinas</creatorcontrib><creatorcontrib>Vashishtha, Parth</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Gallaher, Joseph K</creatorcontrib><creatorcontrib>Prasad, Shyamal K. K</creatorcontrib><creatorcontrib>Metin, Dani Z</creatorcontrib><creatorcontrib>Laufersky, Geoffry</creatorcontrib><creatorcontrib>Gaston, Nicola</creatorcontrib><creatorcontrib>Halpert, Jonathan E</creatorcontrib><creatorcontrib>Hodgkiss, Justin M</creatorcontrib><title>The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? Here, we report an ultrafast transient absorption study of cubic CsPbBr3 NCs as a function of size, compared with the bulk material. For NCs above ∼7 nm edge length, spectral signatures are similar to the bulk material–characterized by state-filling with uncorrelated charges–but discrete new kinetic components emerge at high fluence due to bimolecular recombination occurring in a discrete volume. Only for the smallest NCs (∼4 nm edge length) are strong quantum confinement effects manifest in TA spectral dynamics; focusing toward discrete energy states, enhanced bandgap renormalization energy, and departure from a Boltzmann statistical carrier cooling. At high fluence, we find that a hot-phonon bottleneck effect slows carrier cooling, but this appears to be intrinsic to the material, rather than size dependent. Overall, we find that the smallest NCs are understood in the framework of quantum confinement, however for the widely used NCs with edge lengths &gt;7 nm the photophysics of bulk lead halide perovskites are a better point of reference.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kFFLwzAUhYMoWKc_QcgfaL1p2qZ51DI3YeiE-VzS5oZ1rgk06cB_b4bDpwOXc-499yPkkUHGIGdPqvdZv8dxVAGnTHQAhaivSMLKHNISIL8mCdRSpIUoq1ty5_0BgMVonZDVbo90eXLHOQzOUmfo56xsmEfaOGsGiyPaQAdLG7_tXiZOtzi5k_8eAtJ3ZV0__figjv6e3Jgo-HDRBfl6Xe6adbr5WL01z5tU5RUPsQ2TXcW1AmW4kUwJrDpjFMqyQkAutM6F7FCD4dHCel3wEmojOmWk5JovCPvbG59uD26ebLzWMmjPJNrz8J9EeyHBfwHbqlcU</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Butkus, Justinas</creator><creator>Vashishtha, Parth</creator><creator>Chen, Kai</creator><creator>Gallaher, Joseph K</creator><creator>Prasad, Shyamal K. K</creator><creator>Metin, Dani Z</creator><creator>Laufersky, Geoffry</creator><creator>Gaston, Nicola</creator><creator>Halpert, Jonathan E</creator><creator>Hodgkiss, Justin M</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9629-8213</orcidid><orcidid>https://orcid.org/0000-0003-2365-2610</orcidid></search><sort><creationdate>20170425</creationdate><title>The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals</title><author>Butkus, Justinas ; Vashishtha, Parth ; Chen, Kai ; Gallaher, Joseph K ; Prasad, Shyamal K. K ; Metin, Dani Z ; Laufersky, Geoffry ; Gaston, Nicola ; Halpert, Jonathan E ; Hodgkiss, Justin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-5019b63da0af3f91a7e6bffae956e0e37dd279bed0f30af1cd43508f7baf993d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butkus, Justinas</creatorcontrib><creatorcontrib>Vashishtha, Parth</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Gallaher, Joseph K</creatorcontrib><creatorcontrib>Prasad, Shyamal K. K</creatorcontrib><creatorcontrib>Metin, Dani Z</creatorcontrib><creatorcontrib>Laufersky, Geoffry</creatorcontrib><creatorcontrib>Gaston, Nicola</creatorcontrib><creatorcontrib>Halpert, Jonathan E</creatorcontrib><creatorcontrib>Hodgkiss, Justin M</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butkus, Justinas</au><au>Vashishtha, Parth</au><au>Chen, Kai</au><au>Gallaher, Joseph K</au><au>Prasad, Shyamal K. K</au><au>Metin, Dani Z</au><au>Laufersky, Geoffry</au><au>Gaston, Nicola</au><au>Halpert, Jonathan E</au><au>Hodgkiss, Justin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>29</volume><issue>8</issue><spage>3644</spage><epage>3652</epage><pages>3644-3652</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Colloidal nanocrystals (NCs) of lead halide perovskites are considered highly promising materials that combine the exceptional optoelectronic properties of lead halide perovskites with tunability from quantum confinement. But can we assume that these materials are in the strong confinement regime? Here, we report an ultrafast transient absorption study of cubic CsPbBr3 NCs as a function of size, compared with the bulk material. For NCs above ∼7 nm edge length, spectral signatures are similar to the bulk material–characterized by state-filling with uncorrelated charges–but discrete new kinetic components emerge at high fluence due to bimolecular recombination occurring in a discrete volume. Only for the smallest NCs (∼4 nm edge length) are strong quantum confinement effects manifest in TA spectral dynamics; focusing toward discrete energy states, enhanced bandgap renormalization energy, and departure from a Boltzmann statistical carrier cooling. At high fluence, we find that a hot-phonon bottleneck effect slows carrier cooling, but this appears to be intrinsic to the material, rather than size dependent. Overall, we find that the smallest NCs are understood in the framework of quantum confinement, however for the widely used NCs with edge lengths &gt;7 nm the photophysics of bulk lead halide perovskites are a better point of reference.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b00478</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9629-8213</orcidid><orcidid>https://orcid.org/0000-0003-2365-2610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-04, Vol.29 (8), p.3644-3652
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_7b00478
source ACS Publications
title The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolution%20of%20Quantum%20Confinement%20in%20CsPbBr3%20Perovskite%20Nanocrystals&rft.jtitle=Chemistry%20of%20materials&rft.au=Butkus,%20Justinas&rft.date=2017-04-25&rft.volume=29&rft.issue=8&rft.spage=3644&rft.epage=3652&rft.pages=3644-3652&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b00478&rft_dat=%3Cacs%3Ea036437619%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true