In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup

Rechargeable solid-state lithium ion batteries (SSLB) require fast ion conducting solid electrolytes (SEs) to enable high charge and discharge rates. Li7P3S11 is a particularly promising lithium solid electrolyte, exhibiting very high room temperature conductivities of up to 17 mS·cm–1 and high duct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-09, Vol.28 (17), p.6152-6165
Hauptverfasser: Busche, Martin R, Weber, Dominik A, Schneider, Yannik, Dietrich, Christian, Wenzel, Sebastian, Leichtweiss, Thomas, Schröder, Daniel, Zhang, Wenbo, Weigand, Harald, Walter, Dirk, Sedlmaier, Stefan J, Houtarde, Diane, Nazar, Linda F, Janek, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6165
container_issue 17
container_start_page 6152
container_title Chemistry of materials
container_volume 28
creator Busche, Martin R
Weber, Dominik A
Schneider, Yannik
Dietrich, Christian
Wenzel, Sebastian
Leichtweiss, Thomas
Schröder, Daniel
Zhang, Wenbo
Weigand, Harald
Walter, Dirk
Sedlmaier, Stefan J
Houtarde, Diane
Nazar, Linda F
Janek, Jürgen
description Rechargeable solid-state lithium ion batteries (SSLB) require fast ion conducting solid electrolytes (SEs) to enable high charge and discharge rates. Li7P3S11 is a particularly promising lithium solid electrolyte, exhibiting very high room temperature conductivities of up to 17 mS·cm–1 and high ductility, allowing fast ion transport through the bulk and intimate contact to high surface electrodes. Here we present a novel hot-press setup that facilitates the synthesis of solid electrolytes by combining in situ electrochemical impedance spectroscopy (EIS) with simultaneous temperature- and pressure-monitoring. While a high room temperature conductivity in the order of 10 mS·cm–1 is readily achieved for phase pure Li7P3S11 with this design, it further enables monitoring of the different steps of crystallization from an amorphous Li2S–P2S5 glass to triclinic Li7P3S11. Nucleation, crystallization andat temperatures exceeding 280 °Cdecomposition of the material are analyzed in real time, enabling process optimization. The results are supported ex situ by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Raman spectroscopy. Proof-of-principle experiments show the promising cycling- and rate capability of Li0.3In0.7/Li7P3S11/S-composite all-solid-state batteries. It is furthermore presented that discharging below a limit of 1.2 V results in decomposition of the SE/cathode interface.
doi_str_mv 10.1021/acs.chemmater.6b02163
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_6b02163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a315585024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-df5e3dd137fcd884338cf3fb63dd135bbb125759bdbad3a52c5d8ca1c3db6d1d3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoWKc_QcgfyMxplra7lOJcoeKgeiklX9WMLpEmvdBfb6bDqwPPOed94UHoFugSaA53QoWl-jCHg4hmWhYysYKdoQx4TgmnND9HGa3WJVmVvLhEVyHsKYX0WmXorXG4s3HGT97Z6Cfr3rEf8EaEiFtLGu9w7Z2eVdolUO5YB4Dr6StEMY72W0SbThoXrDZY4K2PZDeZEHBn4vx5jS4GMQZzc5oL9Lp5eKm3pH1-bOr7loi8YJHogRumNbByULqqVoxVamCDLH4hl1JCzku-lloKzQTPFdeVEqCYloUGzRYI_nKTin7v58mlth5of_TTH-G_n_7kh_0AeUJdug</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup</title><source>American Chemical Society Journals</source><creator>Busche, Martin R ; Weber, Dominik A ; Schneider, Yannik ; Dietrich, Christian ; Wenzel, Sebastian ; Leichtweiss, Thomas ; Schröder, Daniel ; Zhang, Wenbo ; Weigand, Harald ; Walter, Dirk ; Sedlmaier, Stefan J ; Houtarde, Diane ; Nazar, Linda F ; Janek, Jürgen</creator><creatorcontrib>Busche, Martin R ; Weber, Dominik A ; Schneider, Yannik ; Dietrich, Christian ; Wenzel, Sebastian ; Leichtweiss, Thomas ; Schröder, Daniel ; Zhang, Wenbo ; Weigand, Harald ; Walter, Dirk ; Sedlmaier, Stefan J ; Houtarde, Diane ; Nazar, Linda F ; Janek, Jürgen</creatorcontrib><description>Rechargeable solid-state lithium ion batteries (SSLB) require fast ion conducting solid electrolytes (SEs) to enable high charge and discharge rates. Li7P3S11 is a particularly promising lithium solid electrolyte, exhibiting very high room temperature conductivities of up to 17 mS·cm–1 and high ductility, allowing fast ion transport through the bulk and intimate contact to high surface electrodes. Here we present a novel hot-press setup that facilitates the synthesis of solid electrolytes by combining in situ electrochemical impedance spectroscopy (EIS) with simultaneous temperature- and pressure-monitoring. While a high room temperature conductivity in the order of 10 mS·cm–1 is readily achieved for phase pure Li7P3S11 with this design, it further enables monitoring of the different steps of crystallization from an amorphous Li2S–P2S5 glass to triclinic Li7P3S11. Nucleation, crystallization andat temperatures exceeding 280 °Cdecomposition of the material are analyzed in real time, enabling process optimization. The results are supported ex situ by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Raman spectroscopy. Proof-of-principle experiments show the promising cycling- and rate capability of Li0.3In0.7/Li7P3S11/S-composite all-solid-state batteries. It is furthermore presented that discharging below a limit of 1.2 V results in decomposition of the SE/cathode interface.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b02163</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2016-09, Vol.28 (17), p.6152-6165</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.6b02163$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b02163$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Busche, Martin R</creatorcontrib><creatorcontrib>Weber, Dominik A</creatorcontrib><creatorcontrib>Schneider, Yannik</creatorcontrib><creatorcontrib>Dietrich, Christian</creatorcontrib><creatorcontrib>Wenzel, Sebastian</creatorcontrib><creatorcontrib>Leichtweiss, Thomas</creatorcontrib><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Weigand, Harald</creatorcontrib><creatorcontrib>Walter, Dirk</creatorcontrib><creatorcontrib>Sedlmaier, Stefan J</creatorcontrib><creatorcontrib>Houtarde, Diane</creatorcontrib><creatorcontrib>Nazar, Linda F</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Rechargeable solid-state lithium ion batteries (SSLB) require fast ion conducting solid electrolytes (SEs) to enable high charge and discharge rates. Li7P3S11 is a particularly promising lithium solid electrolyte, exhibiting very high room temperature conductivities of up to 17 mS·cm–1 and high ductility, allowing fast ion transport through the bulk and intimate contact to high surface electrodes. Here we present a novel hot-press setup that facilitates the synthesis of solid electrolytes by combining in situ electrochemical impedance spectroscopy (EIS) with simultaneous temperature- and pressure-monitoring. While a high room temperature conductivity in the order of 10 mS·cm–1 is readily achieved for phase pure Li7P3S11 with this design, it further enables monitoring of the different steps of crystallization from an amorphous Li2S–P2S5 glass to triclinic Li7P3S11. Nucleation, crystallization andat temperatures exceeding 280 °Cdecomposition of the material are analyzed in real time, enabling process optimization. The results are supported ex situ by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Raman spectroscopy. Proof-of-principle experiments show the promising cycling- and rate capability of Li0.3In0.7/Li7P3S11/S-composite all-solid-state batteries. It is furthermore presented that discharging below a limit of 1.2 V results in decomposition of the SE/cathode interface.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kF1LwzAUhoMoWKc_QcgfyMxplra7lOJcoeKgeiklX9WMLpEmvdBfb6bDqwPPOed94UHoFugSaA53QoWl-jCHg4hmWhYysYKdoQx4TgmnND9HGa3WJVmVvLhEVyHsKYX0WmXorXG4s3HGT97Z6Cfr3rEf8EaEiFtLGu9w7Z2eVdolUO5YB4Dr6StEMY72W0SbThoXrDZY4K2PZDeZEHBn4vx5jS4GMQZzc5oL9Lp5eKm3pH1-bOr7loi8YJHogRumNbByULqqVoxVamCDLH4hl1JCzku-lloKzQTPFdeVEqCYloUGzRYI_nKTin7v58mlth5of_TTH-G_n_7kh_0AeUJdug</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Busche, Martin R</creator><creator>Weber, Dominik A</creator><creator>Schneider, Yannik</creator><creator>Dietrich, Christian</creator><creator>Wenzel, Sebastian</creator><creator>Leichtweiss, Thomas</creator><creator>Schröder, Daniel</creator><creator>Zhang, Wenbo</creator><creator>Weigand, Harald</creator><creator>Walter, Dirk</creator><creator>Sedlmaier, Stefan J</creator><creator>Houtarde, Diane</creator><creator>Nazar, Linda F</creator><creator>Janek, Jürgen</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160913</creationdate><title>In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup</title><author>Busche, Martin R ; Weber, Dominik A ; Schneider, Yannik ; Dietrich, Christian ; Wenzel, Sebastian ; Leichtweiss, Thomas ; Schröder, Daniel ; Zhang, Wenbo ; Weigand, Harald ; Walter, Dirk ; Sedlmaier, Stefan J ; Houtarde, Diane ; Nazar, Linda F ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-df5e3dd137fcd884338cf3fb63dd135bbb125759bdbad3a52c5d8ca1c3db6d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busche, Martin R</creatorcontrib><creatorcontrib>Weber, Dominik A</creatorcontrib><creatorcontrib>Schneider, Yannik</creatorcontrib><creatorcontrib>Dietrich, Christian</creatorcontrib><creatorcontrib>Wenzel, Sebastian</creatorcontrib><creatorcontrib>Leichtweiss, Thomas</creatorcontrib><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Zhang, Wenbo</creatorcontrib><creatorcontrib>Weigand, Harald</creatorcontrib><creatorcontrib>Walter, Dirk</creatorcontrib><creatorcontrib>Sedlmaier, Stefan J</creatorcontrib><creatorcontrib>Houtarde, Diane</creatorcontrib><creatorcontrib>Nazar, Linda F</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busche, Martin R</au><au>Weber, Dominik A</au><au>Schneider, Yannik</au><au>Dietrich, Christian</au><au>Wenzel, Sebastian</au><au>Leichtweiss, Thomas</au><au>Schröder, Daniel</au><au>Zhang, Wenbo</au><au>Weigand, Harald</au><au>Walter, Dirk</au><au>Sedlmaier, Stefan J</au><au>Houtarde, Diane</au><au>Nazar, Linda F</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2016-09-13</date><risdate>2016</risdate><volume>28</volume><issue>17</issue><spage>6152</spage><epage>6165</epage><pages>6152-6165</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Rechargeable solid-state lithium ion batteries (SSLB) require fast ion conducting solid electrolytes (SEs) to enable high charge and discharge rates. Li7P3S11 is a particularly promising lithium solid electrolyte, exhibiting very high room temperature conductivities of up to 17 mS·cm–1 and high ductility, allowing fast ion transport through the bulk and intimate contact to high surface electrodes. Here we present a novel hot-press setup that facilitates the synthesis of solid electrolytes by combining in situ electrochemical impedance spectroscopy (EIS) with simultaneous temperature- and pressure-monitoring. While a high room temperature conductivity in the order of 10 mS·cm–1 is readily achieved for phase pure Li7P3S11 with this design, it further enables monitoring of the different steps of crystallization from an amorphous Li2S–P2S5 glass to triclinic Li7P3S11. Nucleation, crystallization andat temperatures exceeding 280 °Cdecomposition of the material are analyzed in real time, enabling process optimization. The results are supported ex situ by means of X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Raman spectroscopy. Proof-of-principle experiments show the promising cycling- and rate capability of Li0.3In0.7/Li7P3S11/S-composite all-solid-state batteries. It is furthermore presented that discharging below a limit of 1.2 V results in decomposition of the SE/cathode interface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b02163</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2016-09, Vol.28 (17), p.6152-6165
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_6b02163
source American Chemical Society Journals
title In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Monitoring%20of%20Fast%20Li-Ion%20Conductor%20Li7P3S11%20Crystallization%20Inside%20a%20Hot-Press%20Setup&rft.jtitle=Chemistry%20of%20materials&rft.au=Busche,%20Martin%20R&rft.date=2016-09-13&rft.volume=28&rft.issue=17&rft.spage=6152&rft.epage=6165&rft.pages=6152-6165&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b02163&rft_dat=%3Cacs%3Ea315585024%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true