Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4

Similar to surfaces of three-dimensional (3D) bulk materials, edges are inevitable in 2D materials and have been studied a lot (e.g., for MoS2). In the current work, taking the ambient-stable MoSi2N4 as an example, nonpolar and polar edges as well as polar-edge reconstructions are studied based on f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2024-02, Vol.36 (3), p.1526-1535
Hauptverfasser: Zhang, Yuejiao, Gao, Yumeng, Ren, Yinti, Jin, Chendong, Zhang, Hu, Lian, Ruqian, Gong, Penglai, Wang, Rui-Ning, Wang, Jiang-Long, Shi, Xing-Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1535
container_issue 3
container_start_page 1526
container_title Chemistry of materials
container_volume 36
creator Zhang, Yuejiao
Gao, Yumeng
Ren, Yinti
Jin, Chendong
Zhang, Hu
Lian, Ruqian
Gong, Penglai
Wang, Rui-Ning
Wang, Jiang-Long
Shi, Xing-Qiang
description Similar to surfaces of three-dimensional (3D) bulk materials, edges are inevitable in 2D materials and have been studied a lot (e.g., for MoS2). In the current work, taking the ambient-stable MoSi2N4 as an example, nonpolar and polar edges as well as polar-edge reconstructions are studied based on first-principles calculations. We demonstrate that a combination of the “local” electron counting model (ECM) at edges and “nonlocal” charge polarity analysis (CPA) across the ribbon is essential for a unified understanding of the “local” edge properties and edge reconstructions in the following aspects. For pristine edges, the semiconducting (metallic) property of nonpolar armchair (polar zigzag) edges is related to CPA, and the spin-paired (spin-polarized) electronic structure of nonpolar (polar) edges is related to the ECM. For polar-edge reconstructions: (1) the polar edges become semiconducting when the reversed dipole from edge-reconstruction partially cancels the accumulated electric dipole within the ribbon; (2) the polar edges can further be spin-paired when edge-reconstruction fulfills the ECM for both the double cation (Mo, Si)-edge and the anion N-edge; and (3) ECM and CPA give the same conclusion for edge-reconstruction. Our analysis of combining ECM and CPA not only gives the general guidance for obtaining spin-paired and semiconducting polar edges but also potentially helps deepen the understanding of edges of other 2D layered materials.
doi_str_mv 10.1021/acs.chemmater.3c02783
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_3c02783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a036179551</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-a391da1c340cfa1eb722bc3a8be8fb2e57d497a0a65c400f5d30e82498420d3c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwCUj-gZTxI7XDDoVSkEJZtF1HEz_aVI0txemCvyeFitXVXM2ZkQ4hjwxmDDh7QpNmZu-6DgfXz4QBrrS4IhOWc8hyAH5NJqALlUmVz2_JXUoHADaiekJwG6zr04DBtmFH-Stdu641MdiTGWJPF3bnEm2-aRm7pg3nnSoaPNIRoKsYjr_DwntnhvRMN3tHS0yORk8_47rlK3lPbjwek3u45JRs3xab8j2rvpYf5UuVISvUkKEomEVmhATjkblGcd4Ygbpx2jfc5crKQiHgPDcSwOdWgNNcFlpysMKIKWF_d0cd9SGe-jB-qxnUZ0f1ufx3VF8ciR8IhF3x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4</title><source>ACS Publications</source><creator>Zhang, Yuejiao ; Gao, Yumeng ; Ren, Yinti ; Jin, Chendong ; Zhang, Hu ; Lian, Ruqian ; Gong, Penglai ; Wang, Rui-Ning ; Wang, Jiang-Long ; Shi, Xing-Qiang</creator><creatorcontrib>Zhang, Yuejiao ; Gao, Yumeng ; Ren, Yinti ; Jin, Chendong ; Zhang, Hu ; Lian, Ruqian ; Gong, Penglai ; Wang, Rui-Ning ; Wang, Jiang-Long ; Shi, Xing-Qiang</creatorcontrib><description>Similar to surfaces of three-dimensional (3D) bulk materials, edges are inevitable in 2D materials and have been studied a lot (e.g., for MoS2). In the current work, taking the ambient-stable MoSi2N4 as an example, nonpolar and polar edges as well as polar-edge reconstructions are studied based on first-principles calculations. We demonstrate that a combination of the “local” electron counting model (ECM) at edges and “nonlocal” charge polarity analysis (CPA) across the ribbon is essential for a unified understanding of the “local” edge properties and edge reconstructions in the following aspects. For pristine edges, the semiconducting (metallic) property of nonpolar armchair (polar zigzag) edges is related to CPA, and the spin-paired (spin-polarized) electronic structure of nonpolar (polar) edges is related to the ECM. For polar-edge reconstructions: (1) the polar edges become semiconducting when the reversed dipole from edge-reconstruction partially cancels the accumulated electric dipole within the ribbon; (2) the polar edges can further be spin-paired when edge-reconstruction fulfills the ECM for both the double cation (Mo, Si)-edge and the anion N-edge; and (3) ECM and CPA give the same conclusion for edge-reconstruction. Our analysis of combining ECM and CPA not only gives the general guidance for obtaining spin-paired and semiconducting polar edges but also potentially helps deepen the understanding of edges of other 2D layered materials.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.3c02783</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2024-02, Vol.36 (3), p.1526-1535</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2029-1506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.3c02783$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.3c02783$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Yuejiao</creatorcontrib><creatorcontrib>Gao, Yumeng</creatorcontrib><creatorcontrib>Ren, Yinti</creatorcontrib><creatorcontrib>Jin, Chendong</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><creatorcontrib>Lian, Ruqian</creatorcontrib><creatorcontrib>Gong, Penglai</creatorcontrib><creatorcontrib>Wang, Rui-Ning</creatorcontrib><creatorcontrib>Wang, Jiang-Long</creatorcontrib><creatorcontrib>Shi, Xing-Qiang</creatorcontrib><title>Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Similar to surfaces of three-dimensional (3D) bulk materials, edges are inevitable in 2D materials and have been studied a lot (e.g., for MoS2). In the current work, taking the ambient-stable MoSi2N4 as an example, nonpolar and polar edges as well as polar-edge reconstructions are studied based on first-principles calculations. We demonstrate that a combination of the “local” electron counting model (ECM) at edges and “nonlocal” charge polarity analysis (CPA) across the ribbon is essential for a unified understanding of the “local” edge properties and edge reconstructions in the following aspects. For pristine edges, the semiconducting (metallic) property of nonpolar armchair (polar zigzag) edges is related to CPA, and the spin-paired (spin-polarized) electronic structure of nonpolar (polar) edges is related to the ECM. For polar-edge reconstructions: (1) the polar edges become semiconducting when the reversed dipole from edge-reconstruction partially cancels the accumulated electric dipole within the ribbon; (2) the polar edges can further be spin-paired when edge-reconstruction fulfills the ECM for both the double cation (Mo, Si)-edge and the anion N-edge; and (3) ECM and CPA give the same conclusion for edge-reconstruction. Our analysis of combining ECM and CPA not only gives the general guidance for obtaining spin-paired and semiconducting polar edges but also potentially helps deepen the understanding of edges of other 2D layered materials.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtOwzAQRS0EEqXwCUj-gZTxI7XDDoVSkEJZtF1HEz_aVI0txemCvyeFitXVXM2ZkQ4hjwxmDDh7QpNmZu-6DgfXz4QBrrS4IhOWc8hyAH5NJqALlUmVz2_JXUoHADaiekJwG6zr04DBtmFH-Stdu641MdiTGWJPF3bnEm2-aRm7pg3nnSoaPNIRoKsYjr_DwntnhvRMN3tHS0yORk8_47rlK3lPbjwek3u45JRs3xab8j2rvpYf5UuVISvUkKEomEVmhATjkblGcd4Ygbpx2jfc5crKQiHgPDcSwOdWgNNcFlpysMKIKWF_d0cd9SGe-jB-qxnUZ0f1ufx3VF8ciR8IhF3x</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Zhang, Yuejiao</creator><creator>Gao, Yumeng</creator><creator>Ren, Yinti</creator><creator>Jin, Chendong</creator><creator>Zhang, Hu</creator><creator>Lian, Ruqian</creator><creator>Gong, Penglai</creator><creator>Wang, Rui-Ning</creator><creator>Wang, Jiang-Long</creator><creator>Shi, Xing-Qiang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2029-1506</orcidid></search><sort><creationdate>20240213</creationdate><title>Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4</title><author>Zhang, Yuejiao ; Gao, Yumeng ; Ren, Yinti ; Jin, Chendong ; Zhang, Hu ; Lian, Ruqian ; Gong, Penglai ; Wang, Rui-Ning ; Wang, Jiang-Long ; Shi, Xing-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-a391da1c340cfa1eb722bc3a8be8fb2e57d497a0a65c400f5d30e82498420d3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuejiao</creatorcontrib><creatorcontrib>Gao, Yumeng</creatorcontrib><creatorcontrib>Ren, Yinti</creatorcontrib><creatorcontrib>Jin, Chendong</creatorcontrib><creatorcontrib>Zhang, Hu</creatorcontrib><creatorcontrib>Lian, Ruqian</creatorcontrib><creatorcontrib>Gong, Penglai</creatorcontrib><creatorcontrib>Wang, Rui-Ning</creatorcontrib><creatorcontrib>Wang, Jiang-Long</creatorcontrib><creatorcontrib>Shi, Xing-Qiang</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuejiao</au><au>Gao, Yumeng</au><au>Ren, Yinti</au><au>Jin, Chendong</au><au>Zhang, Hu</au><au>Lian, Ruqian</au><au>Gong, Penglai</au><au>Wang, Rui-Ning</au><au>Wang, Jiang-Long</au><au>Shi, Xing-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>36</volume><issue>3</issue><spage>1526</spage><epage>1535</epage><pages>1526-1535</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Similar to surfaces of three-dimensional (3D) bulk materials, edges are inevitable in 2D materials and have been studied a lot (e.g., for MoS2). In the current work, taking the ambient-stable MoSi2N4 as an example, nonpolar and polar edges as well as polar-edge reconstructions are studied based on first-principles calculations. We demonstrate that a combination of the “local” electron counting model (ECM) at edges and “nonlocal” charge polarity analysis (CPA) across the ribbon is essential for a unified understanding of the “local” edge properties and edge reconstructions in the following aspects. For pristine edges, the semiconducting (metallic) property of nonpolar armchair (polar zigzag) edges is related to CPA, and the spin-paired (spin-polarized) electronic structure of nonpolar (polar) edges is related to the ECM. For polar-edge reconstructions: (1) the polar edges become semiconducting when the reversed dipole from edge-reconstruction partially cancels the accumulated electric dipole within the ribbon; (2) the polar edges can further be spin-paired when edge-reconstruction fulfills the ECM for both the double cation (Mo, Si)-edge and the anion N-edge; and (3) ECM and CPA give the same conclusion for edge-reconstruction. Our analysis of combining ECM and CPA not only gives the general guidance for obtaining spin-paired and semiconducting polar edges but also potentially helps deepen the understanding of edges of other 2D layered materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.3c02783</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2029-1506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2024-02, Vol.36 (3), p.1526-1535
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_3c02783
source ACS Publications
title Understanding 2D Semiconductor Edges by Combining Local and Nonlocal Effects: The Case of MoSi2N4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%202D%20Semiconductor%20Edges%20by%20Combining%20Local%20and%20Nonlocal%20Effects:%20The%20Case%20of%20MoSi2N4&rft.jtitle=Chemistry%20of%20materials&rft.au=Zhang,%20Yuejiao&rft.date=2024-02-13&rft.volume=36&rft.issue=3&rft.spage=1526&rft.epage=1535&rft.pages=1526-1535&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.3c02783&rft_dat=%3Cacs%3Ea036179551%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true