Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials

While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-10, Vol.34 (19), p.8561-8576
Hauptverfasser: Braeckevelt, Tom, Goeminne, Ruben, Vandenhaute, Sander, Borgmans, Sander, Verstraelen, Toon, Steele, Julian A., Roeffaers, Maarten B. J., Hofkens, Johan, Rogge, Sven M. J., Van Speybroeck, Veronique
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8576
container_issue 19
container_start_page 8561
container_title Chemistry of materials
container_volume 34
creator Braeckevelt, Tom
Goeminne, Ruben
Vandenhaute, Sander
Borgmans, Sander
Verstraelen, Toon
Steele, Julian A.
Roeffaers, Maarten B. J.
Hofkens, Johan
Rogge, Sven M. J.
Van Speybroeck, Veronique
description While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.
doi_str_mv 10.1021/acs.chemmater.2c01508
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_2c01508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a740679657</sourcerecordid><originalsourceid>FETCH-LOGICAL-a174t-bd963d9cb08c3dbe51cf9ba91d4ab6905f9048c7422459f88773922b72d9ba7b3</originalsourceid><addsrcrecordid>eNo9kO9KwzAUxYMoOKePIOQFMpO0WZKPo_4bTBwyP5ckTW1Gm46kFX0bH3XZH_x0L5fzO-dyALgneEYwJQ_KxJlpbNepwYYZNZgwLC7AhDCKEcOYXoIJFpKjnLP5NbiJcYsxSaiYgL-FMWNIYPsLH23iO-ed_4JDY-G6UdHCTVA-usH1Hm5st7NJPAYL-xoWca2XGfx2Cn4oX_UdOhGL3S70Py69c4AK1ZqxPe4RJtnJFh1t6-SmWwvflGmct3BlVTjGr_vB-sGpNt6CqzoNe3eeU_D5_LQpXtHq_WVZLFZIEZ4PSFdynlXSaCxMVmnLiKmlVpJUudJziVktcS4MzynNmayF4DyTlGpOqyTjOpsCcvJNbZbbfgw-pZUEl4eKy8Pxv-LyXHG2B1hsd0g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials</title><source>American Chemical Society Journals</source><creator>Braeckevelt, Tom ; Goeminne, Ruben ; Vandenhaute, Sander ; Borgmans, Sander ; Verstraelen, Toon ; Steele, Julian A. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Rogge, Sven M. J. ; Van Speybroeck, Veronique</creator><creatorcontrib>Braeckevelt, Tom ; Goeminne, Ruben ; Vandenhaute, Sander ; Borgmans, Sander ; Verstraelen, Toon ; Steele, Julian A. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Rogge, Sven M. J. ; Van Speybroeck, Veronique</creatorcontrib><description>While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.2c01508</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2022-10, Vol.34 (19), p.8561-8576</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9288-5608 ; 0000-0003-2206-178X ; 0000-0002-9101-0567 ; 0000-0001-6582-6514 ; 0000-0001-7982-4413 ; 0000-0003-4493-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.2c01508$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.2c01508$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Braeckevelt, Tom</creatorcontrib><creatorcontrib>Goeminne, Ruben</creatorcontrib><creatorcontrib>Vandenhaute, Sander</creatorcontrib><creatorcontrib>Borgmans, Sander</creatorcontrib><creatorcontrib>Verstraelen, Toon</creatorcontrib><creatorcontrib>Steele, Julian A.</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J.</creatorcontrib><creatorcontrib>Hofkens, Johan</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><title>Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kO9KwzAUxYMoOKePIOQFMpO0WZKPo_4bTBwyP5ckTW1Gm46kFX0bH3XZH_x0L5fzO-dyALgneEYwJQ_KxJlpbNepwYYZNZgwLC7AhDCKEcOYXoIJFpKjnLP5NbiJcYsxSaiYgL-FMWNIYPsLH23iO-ed_4JDY-G6UdHCTVA-usH1Hm5st7NJPAYL-xoWca2XGfx2Cn4oX_UdOhGL3S70Py69c4AK1ZqxPe4RJtnJFh1t6-SmWwvflGmct3BlVTjGr_vB-sGpNt6CqzoNe3eeU_D5_LQpXtHq_WVZLFZIEZ4PSFdynlXSaCxMVmnLiKmlVpJUudJziVktcS4MzynNmayF4DyTlGpOqyTjOpsCcvJNbZbbfgw-pZUEl4eKy8Pxv-LyXHG2B1hsd0g</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>Braeckevelt, Tom</creator><creator>Goeminne, Ruben</creator><creator>Vandenhaute, Sander</creator><creator>Borgmans, Sander</creator><creator>Verstraelen, Toon</creator><creator>Steele, Julian A.</creator><creator>Roeffaers, Maarten B. J.</creator><creator>Hofkens, Johan</creator><creator>Rogge, Sven M. J.</creator><creator>Van Speybroeck, Veronique</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9288-5608</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-9101-0567</orcidid><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid><orcidid>https://orcid.org/0000-0001-7982-4413</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid></search><sort><creationdate>20221011</creationdate><title>Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials</title><author>Braeckevelt, Tom ; Goeminne, Ruben ; Vandenhaute, Sander ; Borgmans, Sander ; Verstraelen, Toon ; Steele, Julian A. ; Roeffaers, Maarten B. J. ; Hofkens, Johan ; Rogge, Sven M. J. ; Van Speybroeck, Veronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a174t-bd963d9cb08c3dbe51cf9ba91d4ab6905f9048c7422459f88773922b72d9ba7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braeckevelt, Tom</creatorcontrib><creatorcontrib>Goeminne, Ruben</creatorcontrib><creatorcontrib>Vandenhaute, Sander</creatorcontrib><creatorcontrib>Borgmans, Sander</creatorcontrib><creatorcontrib>Verstraelen, Toon</creatorcontrib><creatorcontrib>Steele, Julian A.</creatorcontrib><creatorcontrib>Roeffaers, Maarten B. J.</creatorcontrib><creatorcontrib>Hofkens, Johan</creatorcontrib><creatorcontrib>Rogge, Sven M. J.</creatorcontrib><creatorcontrib>Van Speybroeck, Veronique</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braeckevelt, Tom</au><au>Goeminne, Ruben</au><au>Vandenhaute, Sander</au><au>Borgmans, Sander</au><au>Verstraelen, Toon</au><au>Steele, Julian A.</au><au>Roeffaers, Maarten B. J.</au><au>Hofkens, Johan</au><au>Rogge, Sven M. J.</au><au>Van Speybroeck, Veronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2022-10-11</date><risdate>2022</risdate><volume>34</volume><issue>19</issue><spage>8561</spage><epage>8576</epage><pages>8561-8576</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>While metal halide perovskites (MHPs) have shown great potential for various optoelectronic applications, their widespread adoption in commercial photovoltaic cells or photosensors is currently restricted, given that MHPs such as CsPbI3 and FAPbI3 spontaneously transition to an optically inactive nonperovskite phase at ambient conditions. Herein, we put forward an accurate first-principles procedure to obtain fundamental insight into this phase stability conundrum. To this end, we computationally predict the Helmholtz free energy, composed of the electronic ground state energy and thermal corrections, as this is the fundamental quantity describing the phase stability in polymorphic materials. By adopting the random phase approximation method as a wave function-based method that intrinsically accounts for many-body electron correlation effects as a benchmark for the ground state energy, we validate the performance of different exchange-correlation functionals and dispersion methods. The thermal corrections, accessed through the vibrational density of states, are accessed through molecular dynamics simulations, using a phase-transferable machine learning potential to accurately account for the MHPs’ anharmonicity and mitigate size effects. The here proposed procedure is critically validated on CsPbI3, which is a challenging material as its phase stability changes slowly with varying temperature. We demonstrate that our procedure is essential to reproduce the experimental transition temperature, as choosing an inadequate functional can easily miss the transition temperature by more than 100 K. These results demonstrate that the here validated methodology is ideally suited to understand how factors such as strain engineering, surface functionalization, or compositional engineering could help to phase-stabilize MHPs for targeted applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.2c01508</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9288-5608</orcidid><orcidid>https://orcid.org/0000-0003-2206-178X</orcidid><orcidid>https://orcid.org/0000-0002-9101-0567</orcidid><orcidid>https://orcid.org/0000-0001-6582-6514</orcidid><orcidid>https://orcid.org/0000-0001-7982-4413</orcidid><orcidid>https://orcid.org/0000-0003-4493-5708</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2022-10, Vol.34 (19), p.8561-8576
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_acs_chemmater_2c01508
source American Chemical Society Journals
title Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurately%20Determining%20the%20Phase%20Transition%20Temperature%20of%20CsPbI3%20via%20Random-Phase%20Approximation%20Calculations%20and%20Phase-Transferable%20Machine%20Learning%20Potentials&rft.jtitle=Chemistry%20of%20materials&rft.au=Braeckevelt,%20Tom&rft.date=2022-10-11&rft.volume=34&rft.issue=19&rft.spage=8561&rft.epage=8576&rft.pages=8561-8576&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.2c01508&rft_dat=%3Cacs%3Ea740679657%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true