SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation

The ternary zinc nitrides CaZn2N2 and SrZn2N2 are promising materials for solar energy conversion because their direct band gaps are tunable to optimal values, and they contain only earth-abundant elements. We report first-principles calculations with a focus on defect chemistry and propose a method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-04, Vol.33 (8), p.2864-2870
Hauptverfasser: Kikuchi, Ryosuke, Ueno, Koki, Nakamura, Toru, Kurabuchi, Takahiro, Kaneko, Yasushi, Kumagai, Yu, Oba, Fumiyasu
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2870
container_issue 8
container_start_page 2864
container_title Chemistry of materials
container_volume 33
creator Kikuchi, Ryosuke
Ueno, Koki
Nakamura, Toru
Kurabuchi, Takahiro
Kaneko, Yasushi
Kumagai, Yu
Oba, Fumiyasu
description The ternary zinc nitrides CaZn2N2 and SrZn2N2 are promising materials for solar energy conversion because their direct band gaps are tunable to optimal values, and they contain only earth-abundant elements. We report first-principles calculations with a focus on defect chemistry and propose a method of synthesis for SrZn2N2. Our calculations reveal that although the N vacancy has a relatively low formation energy among the native defects in SrZn2N2 and shows deep levels within the band gap, its concentration can be sufficiently reduced by controlled crystal growth and extrinsic doping. The SrZn2N2 powder was synthesized by NH3 nitridation of the SrZn2 alloy at 600 °C and atmospheric pressure. We experimentally determined the direct band gap of SrZn2N2 to be 1.6 eV, consistent with our theoretical prediction.
doi_str_mv 10.1021/acs.chemmater.1c00075
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_1c00075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a715426671</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-593abb69bfa04c3858dc528e0639d9834b289a3aa5f96935b62c66004b4fbbc43</originalsourceid><addsrcrecordid>eNo9kN1KwzAYhoMoOKeXIOQGOr8kTZp4NuYvzHnQeeJJ-ZKmtKNrIYkHvXs7HB698PL-wEPIPYMVA84e0MWVa_3xiMmHFXMAUMgLsmCSQyYB-CVZgDZFlhdSXZObGA8AbK7qBbFl-B74jlOMFGk59hjo2sYxWB8e6b71Y_Cpc9jTJ994l-hmPupiChPFoablNKTWxy5SO9EPn-bcuu_Hie66FLoaUzcOt-SqwT76u7MuydfL837zlm0_X983622GzIiUSSPQWmVsg5A7oaWuneTagxKmNlrklmuDAlE2RhkhreJOKYDc5o21LhdLwv52Zx7VYfwJw_xWMahOkKqT-Q-pOkMSv3aiXqk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation</title><source>American Chemical Society Journals</source><creator>Kikuchi, Ryosuke ; Ueno, Koki ; Nakamura, Toru ; Kurabuchi, Takahiro ; Kaneko, Yasushi ; Kumagai, Yu ; Oba, Fumiyasu</creator><creatorcontrib>Kikuchi, Ryosuke ; Ueno, Koki ; Nakamura, Toru ; Kurabuchi, Takahiro ; Kaneko, Yasushi ; Kumagai, Yu ; Oba, Fumiyasu</creatorcontrib><description>The ternary zinc nitrides CaZn2N2 and SrZn2N2 are promising materials for solar energy conversion because their direct band gaps are tunable to optimal values, and they contain only earth-abundant elements. We report first-principles calculations with a focus on defect chemistry and propose a method of synthesis for SrZn2N2. Our calculations reveal that although the N vacancy has a relatively low formation energy among the native defects in SrZn2N2 and shows deep levels within the band gap, its concentration can be sufficiently reduced by controlled crystal growth and extrinsic doping. The SrZn2N2 powder was synthesized by NH3 nitridation of the SrZn2 alloy at 600 °C and atmospheric pressure. We experimentally determined the direct band gap of SrZn2N2 to be 1.6 eV, consistent with our theoretical prediction.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.1c00075</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-04, Vol.33 (8), p.2864-2870</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6058-2917 ; 0000-0002-4290-4695 ; 0000-0001-7178-5333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.1c00075$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.1c00075$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kikuchi, Ryosuke</creatorcontrib><creatorcontrib>Ueno, Koki</creatorcontrib><creatorcontrib>Nakamura, Toru</creatorcontrib><creatorcontrib>Kurabuchi, Takahiro</creatorcontrib><creatorcontrib>Kaneko, Yasushi</creatorcontrib><creatorcontrib>Kumagai, Yu</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><title>SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The ternary zinc nitrides CaZn2N2 and SrZn2N2 are promising materials for solar energy conversion because their direct band gaps are tunable to optimal values, and they contain only earth-abundant elements. We report first-principles calculations with a focus on defect chemistry and propose a method of synthesis for SrZn2N2. Our calculations reveal that although the N vacancy has a relatively low formation energy among the native defects in SrZn2N2 and shows deep levels within the band gap, its concentration can be sufficiently reduced by controlled crystal growth and extrinsic doping. The SrZn2N2 powder was synthesized by NH3 nitridation of the SrZn2 alloy at 600 °C and atmospheric pressure. We experimentally determined the direct band gap of SrZn2N2 to be 1.6 eV, consistent with our theoretical prediction.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kN1KwzAYhoMoOKeXIOQGOr8kTZp4NuYvzHnQeeJJ-ZKmtKNrIYkHvXs7HB698PL-wEPIPYMVA84e0MWVa_3xiMmHFXMAUMgLsmCSQyYB-CVZgDZFlhdSXZObGA8AbK7qBbFl-B74jlOMFGk59hjo2sYxWB8e6b71Y_Cpc9jTJ994l-hmPupiChPFoablNKTWxy5SO9EPn-bcuu_Hie66FLoaUzcOt-SqwT76u7MuydfL837zlm0_X983622GzIiUSSPQWmVsg5A7oaWuneTagxKmNlrklmuDAlE2RhkhreJOKYDc5o21LhdLwv52Zx7VYfwJw_xWMahOkKqT-Q-pOkMSv3aiXqk</recordid><startdate>20210427</startdate><enddate>20210427</enddate><creator>Kikuchi, Ryosuke</creator><creator>Ueno, Koki</creator><creator>Nakamura, Toru</creator><creator>Kurabuchi, Takahiro</creator><creator>Kaneko, Yasushi</creator><creator>Kumagai, Yu</creator><creator>Oba, Fumiyasu</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-6058-2917</orcidid><orcidid>https://orcid.org/0000-0002-4290-4695</orcidid><orcidid>https://orcid.org/0000-0001-7178-5333</orcidid></search><sort><creationdate>20210427</creationdate><title>SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation</title><author>Kikuchi, Ryosuke ; Ueno, Koki ; Nakamura, Toru ; Kurabuchi, Takahiro ; Kaneko, Yasushi ; Kumagai, Yu ; Oba, Fumiyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-593abb69bfa04c3858dc528e0639d9834b289a3aa5f96935b62c66004b4fbbc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kikuchi, Ryosuke</creatorcontrib><creatorcontrib>Ueno, Koki</creatorcontrib><creatorcontrib>Nakamura, Toru</creatorcontrib><creatorcontrib>Kurabuchi, Takahiro</creatorcontrib><creatorcontrib>Kaneko, Yasushi</creatorcontrib><creatorcontrib>Kumagai, Yu</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kikuchi, Ryosuke</au><au>Ueno, Koki</au><au>Nakamura, Toru</au><au>Kurabuchi, Takahiro</au><au>Kaneko, Yasushi</au><au>Kumagai, Yu</au><au>Oba, Fumiyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-04-27</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><spage>2864</spage><epage>2870</epage><pages>2864-2870</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The ternary zinc nitrides CaZn2N2 and SrZn2N2 are promising materials for solar energy conversion because their direct band gaps are tunable to optimal values, and they contain only earth-abundant elements. We report first-principles calculations with a focus on defect chemistry and propose a method of synthesis for SrZn2N2. Our calculations reveal that although the N vacancy has a relatively low formation energy among the native defects in SrZn2N2 and shows deep levels within the band gap, its concentration can be sufficiently reduced by controlled crystal growth and extrinsic doping. The SrZn2N2 powder was synthesized by NH3 nitridation of the SrZn2 alloy at 600 °C and atmospheric pressure. We experimentally determined the direct band gap of SrZn2N2 to be 1.6 eV, consistent with our theoretical prediction.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.1c00075</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6058-2917</orcidid><orcidid>https://orcid.org/0000-0002-4290-4695</orcidid><orcidid>https://orcid.org/0000-0001-7178-5333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-04, Vol.33 (8), p.2864-2870
issn 0897-4756
1520-5002
language eng ; jpn
recordid cdi_acs_journals_10_1021_acs_chemmater_1c00075
source American Chemical Society Journals
title SrZn2N2 as a Solar Absorber: Theoretical Defect Chemistry and Synthesis by Metal Alloy Nitridation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SrZn2N2%20as%20a%20Solar%20Absorber:%20Theoretical%20Defect%20Chemistry%20and%20Synthesis%20by%20Metal%20Alloy%20Nitridation&rft.jtitle=Chemistry%20of%20materials&rft.au=Kikuchi,%20Ryosuke&rft.date=2021-04-27&rft.volume=33&rft.issue=8&rft.spage=2864&rft.epage=2870&rft.pages=2864-2870&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.1c00075&rft_dat=%3Cacs%3Ea715426671%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true