Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries

Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2021-01, Vol.33 (2), p.499-512
Hauptverfasser: Wissel, Kerstin, Schoch, Roland, Vogel, Tobias, Donzelli, Manuel, Matveeva, Galina, Kolb, Ute, Bauer, Matthias, Slater, Peter R, Clemens, Oliver
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue 2
container_start_page 499
container_title Chemistry of materials
container_volume 33
creator Wissel, Kerstin
Schoch, Roland
Vogel, Tobias
Donzelli, Manuel
Matveeva, Galina
Kolb, Ute
Bauer, Matthias
Slater, Peter R
Clemens, Oliver
description Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies at different states of charging and discharging. The synthesis of the oxidized phase La2NiO3F2+x proved to be successful by structural analysis using both X-ray powder diffraction and automated electron diffraction tomography techniques. The structural reversibility on re-fluorinating and re-defluorinating is also demonstrated. Moreover, the influence of different sequences of consecutive reduction and oxidation steps on the formed phases has been investigated. The observed structural changes have been compared to changes in phases obtained via other topochemical modification approaches such as hydride-based reduction and oxidative fluorination using F2 gas, highlighting the potential of such electrochemical reactions as alternative synthesis routes. Furthermore, the electrochemical routes represent safe and controllable synthesis approaches for novel phases, which cannot be synthesized via other topochemical methods. Additionally, side reactions, occurring alongside the desired electrochemical reactions, have been addressed and the cycling performance has been studied.
doi_str_mv 10.1021/acs.chemmater.0c01762
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_chemmater_0c01762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b78112434</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-38d35df3e763106c1bc8f79f180553ba26ae41bc714408b5474ae981142bf2063</originalsourceid><addsrcrecordid>eNo9kNtKAzEQhoMoWKuPIOQFUmdy2GQvtbRaKFZKvV6ySZambnfLHlDvfAff0Cdxq-LVMD98_wwfIdcIEwSON9a1E7cN-73tQjMBB6gTfkJGqDgwBcBPyQhMqpnUKjknF227A8ABNSPyMiuD65r6yEdnS7oOvnddrCtqK09Xb9Hbn60u6Lr3vgytD9XXx-dTfTiEhm3eD4EuLX-MKzHn9DV221jRednXTfSBLQbyznbDXzG0l-SssGUbrv7mmDzPZ5vpA1uu7hfT2yWzmIqOCeOF8oUIOhEIicPcmUKnBRpQSuSWJzbIIdQoJZhcSS1tSA2i5HnBIRFjgr-9g5hsV_dNNVzLELKjrewY_tvK_myJb8VeYus</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Wissel, Kerstin ; Schoch, Roland ; Vogel, Tobias ; Donzelli, Manuel ; Matveeva, Galina ; Kolb, Ute ; Bauer, Matthias ; Slater, Peter R ; Clemens, Oliver</creator><creatorcontrib>Wissel, Kerstin ; Schoch, Roland ; Vogel, Tobias ; Donzelli, Manuel ; Matveeva, Galina ; Kolb, Ute ; Bauer, Matthias ; Slater, Peter R ; Clemens, Oliver</creatorcontrib><description>Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies at different states of charging and discharging. The synthesis of the oxidized phase La2NiO3F2+x proved to be successful by structural analysis using both X-ray powder diffraction and automated electron diffraction tomography techniques. The structural reversibility on re-fluorinating and re-defluorinating is also demonstrated. Moreover, the influence of different sequences of consecutive reduction and oxidation steps on the formed phases has been investigated. The observed structural changes have been compared to changes in phases obtained via other topochemical modification approaches such as hydride-based reduction and oxidative fluorination using F2 gas, highlighting the potential of such electrochemical reactions as alternative synthesis routes. Furthermore, the electrochemical routes represent safe and controllable synthesis approaches for novel phases, which cannot be synthesized via other topochemical methods. Additionally, side reactions, occurring alongside the desired electrochemical reactions, have been addressed and the cycling performance has been studied.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.0c01762</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2021-01, Vol.33 (2), p.499-512</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9294-6076 ; 0000-0002-0860-0911 ; 0000-0003-2061-7289 ; 0000-0003-4418-0595 ; 0000-0003-0720-0681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.0c01762$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.0c01762$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Wissel, Kerstin</creatorcontrib><creatorcontrib>Schoch, Roland</creatorcontrib><creatorcontrib>Vogel, Tobias</creatorcontrib><creatorcontrib>Donzelli, Manuel</creatorcontrib><creatorcontrib>Matveeva, Galina</creatorcontrib><creatorcontrib>Kolb, Ute</creatorcontrib><creatorcontrib>Bauer, Matthias</creatorcontrib><creatorcontrib>Slater, Peter R</creatorcontrib><creatorcontrib>Clemens, Oliver</creatorcontrib><title>Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies at different states of charging and discharging. The synthesis of the oxidized phase La2NiO3F2+x proved to be successful by structural analysis using both X-ray powder diffraction and automated electron diffraction tomography techniques. The structural reversibility on re-fluorinating and re-defluorinating is also demonstrated. Moreover, the influence of different sequences of consecutive reduction and oxidation steps on the formed phases has been investigated. The observed structural changes have been compared to changes in phases obtained via other topochemical modification approaches such as hydride-based reduction and oxidative fluorination using F2 gas, highlighting the potential of such electrochemical reactions as alternative synthesis routes. Furthermore, the electrochemical routes represent safe and controllable synthesis approaches for novel phases, which cannot be synthesized via other topochemical methods. Additionally, side reactions, occurring alongside the desired electrochemical reactions, have been addressed and the cycling performance has been studied.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kNtKAzEQhoMoWKuPIOQFUmdy2GQvtbRaKFZKvV6ySZambnfLHlDvfAff0Cdxq-LVMD98_wwfIdcIEwSON9a1E7cN-73tQjMBB6gTfkJGqDgwBcBPyQhMqpnUKjknF227A8ABNSPyMiuD65r6yEdnS7oOvnddrCtqK09Xb9Hbn60u6Lr3vgytD9XXx-dTfTiEhm3eD4EuLX-MKzHn9DV221jRednXTfSBLQbyznbDXzG0l-SssGUbrv7mmDzPZ5vpA1uu7hfT2yWzmIqOCeOF8oUIOhEIicPcmUKnBRpQSuSWJzbIIdQoJZhcSS1tSA2i5HnBIRFjgr-9g5hsV_dNNVzLELKjrewY_tvK_myJb8VeYus</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Wissel, Kerstin</creator><creator>Schoch, Roland</creator><creator>Vogel, Tobias</creator><creator>Donzelli, Manuel</creator><creator>Matveeva, Galina</creator><creator>Kolb, Ute</creator><creator>Bauer, Matthias</creator><creator>Slater, Peter R</creator><creator>Clemens, Oliver</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9294-6076</orcidid><orcidid>https://orcid.org/0000-0002-0860-0911</orcidid><orcidid>https://orcid.org/0000-0003-2061-7289</orcidid><orcidid>https://orcid.org/0000-0003-4418-0595</orcidid><orcidid>https://orcid.org/0000-0003-0720-0681</orcidid></search><sort><creationdate>20210126</creationdate><title>Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries</title><author>Wissel, Kerstin ; Schoch, Roland ; Vogel, Tobias ; Donzelli, Manuel ; Matveeva, Galina ; Kolb, Ute ; Bauer, Matthias ; Slater, Peter R ; Clemens, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-38d35df3e763106c1bc8f79f180553ba26ae41bc714408b5474ae981142bf2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wissel, Kerstin</creatorcontrib><creatorcontrib>Schoch, Roland</creatorcontrib><creatorcontrib>Vogel, Tobias</creatorcontrib><creatorcontrib>Donzelli, Manuel</creatorcontrib><creatorcontrib>Matveeva, Galina</creatorcontrib><creatorcontrib>Kolb, Ute</creatorcontrib><creatorcontrib>Bauer, Matthias</creatorcontrib><creatorcontrib>Slater, Peter R</creatorcontrib><creatorcontrib>Clemens, Oliver</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wissel, Kerstin</au><au>Schoch, Roland</au><au>Vogel, Tobias</au><au>Donzelli, Manuel</au><au>Matveeva, Galina</au><au>Kolb, Ute</au><au>Bauer, Matthias</au><au>Slater, Peter R</au><au>Clemens, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><spage>499</spage><epage>512</epage><pages>499-512</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Within this article, it is shown that an electrochemical defluorination and additional fluorination of Ruddlesden–Popper-type La2NiO3F2 is possible within all-solid-state fluoride-ion batteries. Structural changes within the reduced and oxidized phases have been examined by X-ray diffraction studies at different states of charging and discharging. The synthesis of the oxidized phase La2NiO3F2+x proved to be successful by structural analysis using both X-ray powder diffraction and automated electron diffraction tomography techniques. The structural reversibility on re-fluorinating and re-defluorinating is also demonstrated. Moreover, the influence of different sequences of consecutive reduction and oxidation steps on the formed phases has been investigated. The observed structural changes have been compared to changes in phases obtained via other topochemical modification approaches such as hydride-based reduction and oxidative fluorination using F2 gas, highlighting the potential of such electrochemical reactions as alternative synthesis routes. Furthermore, the electrochemical routes represent safe and controllable synthesis approaches for novel phases, which cannot be synthesized via other topochemical methods. Additionally, side reactions, occurring alongside the desired electrochemical reactions, have been addressed and the cycling performance has been studied.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.0c01762</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9294-6076</orcidid><orcidid>https://orcid.org/0000-0002-0860-0911</orcidid><orcidid>https://orcid.org/0000-0003-2061-7289</orcidid><orcidid>https://orcid.org/0000-0003-4418-0595</orcidid><orcidid>https://orcid.org/0000-0003-0720-0681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2021-01, Vol.33 (2), p.499-512
issn 0897-4756
1520-5002
language eng ; jpn
recordid cdi_acs_journals_10_1021_acs_chemmater_0c01762
source ACS Journals: American Chemical Society Web Editions
title Electrochemical Reduction and Oxidation of Ruddlesden–Popper-Type La2NiO3F2 within Fluoride-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Reduction%20and%20Oxidation%20of%20Ruddlesden%E2%80%93Popper-Type%20La2NiO3F2%20within%20Fluoride-Ion%20Batteries&rft.jtitle=Chemistry%20of%20materials&rft.au=Wissel,%20Kerstin&rft.date=2021-01-26&rft.volume=33&rft.issue=2&rft.spage=499&rft.epage=512&rft.pages=499-512&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.0c01762&rft_dat=%3Cacs%3Eb78112434%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true