2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard
Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2020-02, Vol.92 (4), p.3463-3469 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3469 |
---|---|
container_issue | 4 |
container_start_page | 3463 |
container_title | Analytical chemistry (Washington) |
container_volume | 92 |
creator | Hume, Samantha Greetham, Gregory M Donaldson, Paul M Towrie, Michael Parker, Anthony W Baker, Matthew J Hunt, Neil T |
description | Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids. |
doi_str_mv | 10.1021/acs.analchem.9b05601 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_analchem_9b05601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400457634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a547t-afffddd3cb47c3ee60bfc43cfe0084dbd9c355b288833fbdfed3191b3ad0ca893</originalsourceid><addsrcrecordid>eNqFkd1rFDEUxYModlv9D0QCvvgy683HfPkgSK26UFDcFh9DJrnpTplJtslsof-9GXa7qA_6EPKQ3zk59x5CXjFYMuDsnTZpqb0ezAbHZdtBWQF7Qhas5FBUTcOfkgUAiILXACfkNKVbAMaAVc_JiWBtU-azID3_VKy8izqipestmimGZML2gQZHv8cwYe8T7T39qSeM7-l16v0NnTZI12G4Rz_Rqw3GUQ_0B6Zt8AmpTlR7uvKZz_HoetLe6mhfkGdODwlfHu4zcv354ur8a3H57cvq_ONloUtZT4V2zllrhelkbQRiBZ0zUhiHAI20nW2NKMuON00jhOusQ5unYZ3QFoxuWnFGPux9t7tuRGtyxqgHtY39qOODCrpXf774fqNuwr2qmSx5PRu8PRjEcLfDNKmxTwaHQXsMu6S4BJBlXQn5f1TIijdtzeqMvvkLvQ27eUEzVQHwSsBsKPeUyTWkiO6Ym4Gaa1e5dvVYuzrUnmWvf5_5KHrsOQOwB2b58eN_ev4Clae-gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360026304</pqid></control><display><type>article</type><title>2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hume, Samantha ; Greetham, Gregory M ; Donaldson, Paul M ; Towrie, Michael ; Parker, Anthony W ; Baker, Matthew J ; Hunt, Neil T</creator><creatorcontrib>Hume, Samantha ; Greetham, Gregory M ; Donaldson, Paul M ; Towrie, Michael ; Parker, Anthony W ; Baker, Matthew J ; Hunt, Neil T</creatorcontrib><description>Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.9b05601</identifier><identifier>PMID: 31985198</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Animals ; automation ; Calibration ; Cattle ; Chemistry ; Deuteration ; deuterium oxide ; gamma-Globulins - analysis ; High-throughput screening ; high-throughput screening methods ; Humans ; Infrared spectra ; Infrared spectroscopy ; Laser beams ; Proteins ; Screening ; Serum Albumin, Bovine - analysis ; Solvents ; Solvents - chemistry ; Spectral analysis ; Spectrophotometry, Infrared ; spectroscopy ; Spectrum analysis ; Temperature ; Thermal response ; Two dimensional analysis ; Variation ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.3463-3469</ispartof><rights>Copyright American Chemical Society Feb 18, 2020</rights><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a547t-afffddd3cb47c3ee60bfc43cfe0084dbd9c355b288833fbdfed3191b3ad0ca893</citedby><cites>FETCH-LOGICAL-a547t-afffddd3cb47c3ee60bfc43cfe0084dbd9c355b288833fbdfed3191b3ad0ca893</cites><orcidid>0000-0002-0305-9142 ; 0000-0003-2362-8581 ; 0000-0001-7400-5152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.9b05601$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.9b05601$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31985198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hume, Samantha</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Donaldson, Paul M</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Parker, Anthony W</creatorcontrib><creatorcontrib>Baker, Matthew J</creatorcontrib><creatorcontrib>Hunt, Neil T</creatorcontrib><title>2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids.</description><subject>Analytical chemistry</subject><subject>Animals</subject><subject>automation</subject><subject>Calibration</subject><subject>Cattle</subject><subject>Chemistry</subject><subject>Deuteration</subject><subject>deuterium oxide</subject><subject>gamma-Globulins - analysis</subject><subject>High-throughput screening</subject><subject>high-throughput screening methods</subject><subject>Humans</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Laser beams</subject><subject>Proteins</subject><subject>Screening</subject><subject>Serum Albumin, Bovine - analysis</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Spectral analysis</subject><subject>Spectrophotometry, Infrared</subject><subject>spectroscopy</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Thermal response</subject><subject>Two dimensional analysis</subject><subject>Variation</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1rFDEUxYModlv9D0QCvvgy683HfPkgSK26UFDcFh9DJrnpTplJtslsof-9GXa7qA_6EPKQ3zk59x5CXjFYMuDsnTZpqb0ezAbHZdtBWQF7Qhas5FBUTcOfkgUAiILXACfkNKVbAMaAVc_JiWBtU-azID3_VKy8izqipestmimGZML2gQZHv8cwYe8T7T39qSeM7-l16v0NnTZI12G4Rz_Rqw3GUQ_0B6Zt8AmpTlR7uvKZz_HoetLe6mhfkGdODwlfHu4zcv354ur8a3H57cvq_ONloUtZT4V2zllrhelkbQRiBZ0zUhiHAI20nW2NKMuON00jhOusQ5unYZ3QFoxuWnFGPux9t7tuRGtyxqgHtY39qOODCrpXf774fqNuwr2qmSx5PRu8PRjEcLfDNKmxTwaHQXsMu6S4BJBlXQn5f1TIijdtzeqMvvkLvQ27eUEzVQHwSsBsKPeUyTWkiO6Ym4Gaa1e5dvVYuzrUnmWvf5_5KHrsOQOwB2b58eN_ev4Clae-gw</recordid><startdate>20200218</startdate><enddate>20200218</enddate><creator>Hume, Samantha</creator><creator>Greetham, Gregory M</creator><creator>Donaldson, Paul M</creator><creator>Towrie, Michael</creator><creator>Parker, Anthony W</creator><creator>Baker, Matthew J</creator><creator>Hunt, Neil T</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0305-9142</orcidid><orcidid>https://orcid.org/0000-0003-2362-8581</orcidid><orcidid>https://orcid.org/0000-0001-7400-5152</orcidid></search><sort><creationdate>20200218</creationdate><title>2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard</title><author>Hume, Samantha ; Greetham, Gregory M ; Donaldson, Paul M ; Towrie, Michael ; Parker, Anthony W ; Baker, Matthew J ; Hunt, Neil T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a547t-afffddd3cb47c3ee60bfc43cfe0084dbd9c355b288833fbdfed3191b3ad0ca893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Animals</topic><topic>automation</topic><topic>Calibration</topic><topic>Cattle</topic><topic>Chemistry</topic><topic>Deuteration</topic><topic>deuterium oxide</topic><topic>gamma-Globulins - analysis</topic><topic>High-throughput screening</topic><topic>high-throughput screening methods</topic><topic>Humans</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Laser beams</topic><topic>Proteins</topic><topic>Screening</topic><topic>Serum Albumin, Bovine - analysis</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Spectral analysis</topic><topic>Spectrophotometry, Infrared</topic><topic>spectroscopy</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Thermal response</topic><topic>Two dimensional analysis</topic><topic>Variation</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hume, Samantha</creatorcontrib><creatorcontrib>Greetham, Gregory M</creatorcontrib><creatorcontrib>Donaldson, Paul M</creatorcontrib><creatorcontrib>Towrie, Michael</creatorcontrib><creatorcontrib>Parker, Anthony W</creatorcontrib><creatorcontrib>Baker, Matthew J</creatorcontrib><creatorcontrib>Hunt, Neil T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hume, Samantha</au><au>Greetham, Gregory M</au><au>Donaldson, Paul M</au><au>Towrie, Michael</au><au>Parker, Anthony W</au><au>Baker, Matthew J</au><au>Hunt, Neil T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-02-18</date><risdate>2020</risdate><volume>92</volume><issue>4</issue><spage>3463</spage><epage>3469</epage><pages>3463-3469</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Ultrafast two-dimensional infrared (2D-IR) spectra can now be obtained in a matter of seconds, opening up the possibility of high-throughput screening applications of relevance to the biomedical and pharmaceutical sectors. Determining quantitative information from 2D-IR spectra recorded on different samples and different instruments is however made difficult by variations in beam alignment, laser intensity, and sample conditions. Recently, we demonstrated that 2D-IR spectroscopy of the protein amide I band can be performed in aqueous (H2O) rather than deuterated (D2O) solvents, and we now report a method that uses the magnitude of the associated thermal response of H2O as an internal normalization standard for 2D-IR spectra. Using the water response, which is temporally separated from the protein signal, to normalize the spectra allows significant reduction of the impact of measurement-to-measurement fluctuations on the data. We demonstrate that this normalization method enables creation of calibration curves for measurement of absolute protein concentrations and facilitates reproducible difference spectroscopy methodologies. These advances make significant progress toward the robust data handling strategies that will be essential for the realization of automated spectral analysis tools for large scale 2D-IR screening studies of protein-containing solutions and biofluids.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31985198</pmid><doi>10.1021/acs.analchem.9b05601</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0305-9142</orcidid><orcidid>https://orcid.org/0000-0003-2362-8581</orcidid><orcidid>https://orcid.org/0000-0001-7400-5152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2020-02, Vol.92 (4), p.3463-3469 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_analchem_9b05601 |
source | MEDLINE; American Chemical Society Journals |
subjects | Analytical chemistry Animals automation Calibration Cattle Chemistry Deuteration deuterium oxide gamma-Globulins - analysis High-throughput screening high-throughput screening methods Humans Infrared spectra Infrared spectroscopy Laser beams Proteins Screening Serum Albumin, Bovine - analysis Solvents Solvents - chemistry Spectral analysis Spectrophotometry, Infrared spectroscopy Spectrum analysis Temperature Thermal response Two dimensional analysis Variation Water - chemistry |
title | 2D-Infrared Spectroscopy of Proteins in Water: Using the Solvent Thermal Response as an Internal Standard |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D-Infrared%20Spectroscopy%20of%20Proteins%20in%20Water:%20Using%20the%20Solvent%20Thermal%20Response%20as%20an%20Internal%20Standard&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Hume,%20Samantha&rft.date=2020-02-18&rft.volume=92&rft.issue=4&rft.spage=3463&rft.epage=3469&rft.pages=3463-3469&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.9b05601&rft_dat=%3Cproquest_pubme%3E2400457634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360026304&rft_id=info:pmid/31985198&rfr_iscdi=true |