Chameleon: adapting throughput server to time-varying green power budget using online learning
Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | |
container_start_page | 100 |
container_title | |
container_volume | |
creator | Li, Chao Wang, Rui Goswami, Nilanjan Li, Xian Li, Tao Qian, Depei |
description | Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization. |
doi_str_mv | 10.5555/2648668.2648693 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>acm</sourceid><recordid>TN_cdi_acm_books_10_5555_2648668_2648693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acm_books_10_5555_2648668_2648693</sourcerecordid><originalsourceid>FETCH-LOGICAL-a157t-bd8c8d8bbdea08d797976dffe61ed1ba0f4c47fd5d4fa52d96bd4ed049daa4f23</originalsourceid><addsrcrecordid>eNqNjstuwjAURC0hJChkzS-wSbCd69eyilqKhMQG1tZ1ri0egUg1_y_SNh_QmcVsjkaHsZXglRqykRqs1rb6XVdP2JsA45yQtZIzVuR85ZwLYxQomLN5c8Z77GL_WLJpwi7HYtwFO31-HJuvcn_Y7pr3fYlCmWcZyLaWbAgUkVsybqimlKIWkURAnqAFk0gRJFSSnA4EkTg4QoQk6wVb__1ie_eh72_ZC-5_1P2o7kf1Aa3-ifrwfYmpfgE3akSE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chameleon: adapting throughput server to time-varying green power budget using online learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</creator><creatorcontrib>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</creatorcontrib><description>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</description><identifier>ISBN: 1479912352</identifier><identifier>ISBN: 9781479912353</identifier><identifier>DOI: 10.5555/2648668.2648693</identifier><language>eng</language><publisher>Piscataway, NJ, USA: IEEE Press</publisher><subject>Applied computing -- Physical sciences and engineering -- Electronics ; Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures ; Computer systems organization -- Dependable and fault-tolerant systems and networks ; Computing methodologies -- Machine learning ; General and reference -- Cross-computing tools and techniques -- Performance ; Information systems -- Data management systems -- Middleware for databases -- Application servers ; Information systems -- Data management systems -- Middleware for databases -- Database web servers ; Networks -- Network performance evaluation</subject><ispartof>Proceedings of the 2013 International Symposium on Low Power Electronics and Design, 2013, p.100-105</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,27925</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Goswami, Nilanjan</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Qian, Depei</creatorcontrib><title>Chameleon: adapting throughput server to time-varying green power budget using online learning</title><title>Proceedings of the 2013 International Symposium on Low Power Electronics and Design</title><description>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</description><subject>Applied computing -- Physical sciences and engineering -- Electronics</subject><subject>Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures</subject><subject>Computer systems organization -- Dependable and fault-tolerant systems and networks</subject><subject>Computing methodologies -- Machine learning</subject><subject>General and reference -- Cross-computing tools and techniques -- Performance</subject><subject>Information systems -- Data management systems -- Middleware for databases -- Application servers</subject><subject>Information systems -- Data management systems -- Middleware for databases -- Database web servers</subject><subject>Networks -- Network performance evaluation</subject><isbn>1479912352</isbn><isbn>9781479912353</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNqNjstuwjAURC0hJChkzS-wSbCd69eyilqKhMQG1tZ1ri0egUg1_y_SNh_QmcVsjkaHsZXglRqykRqs1rb6XVdP2JsA45yQtZIzVuR85ZwLYxQomLN5c8Z77GL_WLJpwi7HYtwFO31-HJuvcn_Y7pr3fYlCmWcZyLaWbAgUkVsybqimlKIWkURAnqAFk0gRJFSSnA4EkTg4QoQk6wVb__1ie_eh72_ZC-5_1P2o7kf1Aa3-ifrwfYmpfgE3akSE</recordid><startdate>20130904</startdate><enddate>20130904</enddate><creator>Li, Chao</creator><creator>Wang, Rui</creator><creator>Goswami, Nilanjan</creator><creator>Li, Xian</creator><creator>Li, Tao</creator><creator>Qian, Depei</creator><general>IEEE Press</general><scope/></search><sort><creationdate>20130904</creationdate><title>Chameleon</title><author>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a157t-bd8c8d8bbdea08d797976dffe61ed1ba0f4c47fd5d4fa52d96bd4ed049daa4f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied computing -- Physical sciences and engineering -- Electronics</topic><topic>Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures</topic><topic>Computer systems organization -- Dependable and fault-tolerant systems and networks</topic><topic>Computing methodologies -- Machine learning</topic><topic>General and reference -- Cross-computing tools and techniques -- Performance</topic><topic>Information systems -- Data management systems -- Middleware for databases -- Application servers</topic><topic>Information systems -- Data management systems -- Middleware for databases -- Database web servers</topic><topic>Networks -- Network performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Goswami, Nilanjan</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Qian, Depei</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Wang, Rui</au><au>Goswami, Nilanjan</au><au>Li, Xian</au><au>Li, Tao</au><au>Qian, Depei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chameleon: adapting throughput server to time-varying green power budget using online learning</atitle><btitle>Proceedings of the 2013 International Symposium on Low Power Electronics and Design</btitle><date>2013-09-04</date><risdate>2013</risdate><spage>100</spage><epage>105</epage><pages>100-105</pages><isbn>1479912352</isbn><isbn>9781479912353</isbn><abstract>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</abstract><cop>Piscataway, NJ, USA</cop><pub>IEEE Press</pub><doi>10.5555/2648668.2648693</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISBN: 1479912352 |
ispartof | Proceedings of the 2013 International Symposium on Low Power Electronics and Design, 2013, p.100-105 |
issn | |
language | eng |
recordid | cdi_acm_books_10_5555_2648668_2648693 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied computing -- Physical sciences and engineering -- Electronics Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures Computer systems organization -- Dependable and fault-tolerant systems and networks Computing methodologies -- Machine learning General and reference -- Cross-computing tools and techniques -- Performance Information systems -- Data management systems -- Middleware for databases -- Application servers Information systems -- Data management systems -- Middleware for databases -- Database web servers Networks -- Network performance evaluation |
title | Chameleon: adapting throughput server to time-varying green power budget using online learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chameleon:%20adapting%20throughput%20server%20to%20time-varying%20green%20power%20budget%20using%20online%20learning&rft.btitle=Proceedings%20of%20the%202013%20International%20Symposium%20on%20Low%20Power%20Electronics%20and%20Design&rft.au=Li,%20Chao&rft.date=2013-09-04&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.isbn=1479912352&rft.isbn_list=9781479912353&rft_id=info:doi/10.5555/2648668.2648693&rft_dat=%3Cacm%3Eacm_books_10_5555_2648668_2648693%3C/acm%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |