Chameleon: adapting throughput server to time-varying green power budget using online learning

Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Chao, Wang, Rui, Goswami, Nilanjan, Li, Xian, Li, Tao, Qian, Depei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue
container_start_page 100
container_title
container_volume
creator Li, Chao
Wang, Rui
Goswami, Nilanjan
Li, Xian
Li, Tao
Qian, Depei
description Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.
doi_str_mv 10.5555/2648668.2648693
format Conference Proceeding
fullrecord <record><control><sourceid>acm</sourceid><recordid>TN_cdi_acm_books_10_5555_2648668_2648693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acm_books_10_5555_2648668_2648693</sourcerecordid><originalsourceid>FETCH-LOGICAL-a157t-bd8c8d8bbdea08d797976dffe61ed1ba0f4c47fd5d4fa52d96bd4ed049daa4f23</originalsourceid><addsrcrecordid>eNqNjstuwjAURC0hJChkzS-wSbCd69eyilqKhMQG1tZ1ri0egUg1_y_SNh_QmcVsjkaHsZXglRqykRqs1rb6XVdP2JsA45yQtZIzVuR85ZwLYxQomLN5c8Z77GL_WLJpwi7HYtwFO31-HJuvcn_Y7pr3fYlCmWcZyLaWbAgUkVsybqimlKIWkURAnqAFk0gRJFSSnA4EkTg4QoQk6wVb__1ie_eh72_ZC-5_1P2o7kf1Aa3-ifrwfYmpfgE3akSE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chameleon: adapting throughput server to time-varying green power budget using online learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</creator><creatorcontrib>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</creatorcontrib><description>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</description><identifier>ISBN: 1479912352</identifier><identifier>ISBN: 9781479912353</identifier><identifier>DOI: 10.5555/2648668.2648693</identifier><language>eng</language><publisher>Piscataway, NJ, USA: IEEE Press</publisher><subject>Applied computing -- Physical sciences and engineering -- Electronics ; Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures ; Computer systems organization -- Dependable and fault-tolerant systems and networks ; Computing methodologies -- Machine learning ; General and reference -- Cross-computing tools and techniques -- Performance ; Information systems -- Data management systems -- Middleware for databases -- Application servers ; Information systems -- Data management systems -- Middleware for databases -- Database web servers ; Networks -- Network performance evaluation</subject><ispartof>Proceedings of the 2013 International Symposium on Low Power Electronics and Design, 2013, p.100-105</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,27925</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Goswami, Nilanjan</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Qian, Depei</creatorcontrib><title>Chameleon: adapting throughput server to time-varying green power budget using online learning</title><title>Proceedings of the 2013 International Symposium on Low Power Electronics and Design</title><description>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</description><subject>Applied computing -- Physical sciences and engineering -- Electronics</subject><subject>Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures</subject><subject>Computer systems organization -- Dependable and fault-tolerant systems and networks</subject><subject>Computing methodologies -- Machine learning</subject><subject>General and reference -- Cross-computing tools and techniques -- Performance</subject><subject>Information systems -- Data management systems -- Middleware for databases -- Application servers</subject><subject>Information systems -- Data management systems -- Middleware for databases -- Database web servers</subject><subject>Networks -- Network performance evaluation</subject><isbn>1479912352</isbn><isbn>9781479912353</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNqNjstuwjAURC0hJChkzS-wSbCd69eyilqKhMQG1tZ1ri0egUg1_y_SNh_QmcVsjkaHsZXglRqykRqs1rb6XVdP2JsA45yQtZIzVuR85ZwLYxQomLN5c8Z77GL_WLJpwi7HYtwFO31-HJuvcn_Y7pr3fYlCmWcZyLaWbAgUkVsybqimlKIWkURAnqAFk0gRJFSSnA4EkTg4QoQk6wVb__1ie_eh72_ZC-5_1P2o7kf1Aa3-ifrwfYmpfgE3akSE</recordid><startdate>20130904</startdate><enddate>20130904</enddate><creator>Li, Chao</creator><creator>Wang, Rui</creator><creator>Goswami, Nilanjan</creator><creator>Li, Xian</creator><creator>Li, Tao</creator><creator>Qian, Depei</creator><general>IEEE Press</general><scope/></search><sort><creationdate>20130904</creationdate><title>Chameleon</title><author>Li, Chao ; Wang, Rui ; Goswami, Nilanjan ; Li, Xian ; Li, Tao ; Qian, Depei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a157t-bd8c8d8bbdea08d797976dffe61ed1ba0f4c47fd5d4fa52d96bd4ed049daa4f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied computing -- Physical sciences and engineering -- Electronics</topic><topic>Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures</topic><topic>Computer systems organization -- Dependable and fault-tolerant systems and networks</topic><topic>Computing methodologies -- Machine learning</topic><topic>General and reference -- Cross-computing tools and techniques -- Performance</topic><topic>Information systems -- Data management systems -- Middleware for databases -- Application servers</topic><topic>Information systems -- Data management systems -- Middleware for databases -- Database web servers</topic><topic>Networks -- Network performance evaluation</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Goswami, Nilanjan</creatorcontrib><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Qian, Depei</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Wang, Rui</au><au>Goswami, Nilanjan</au><au>Li, Xian</au><au>Li, Tao</au><au>Qian, Depei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chameleon: adapting throughput server to time-varying green power budget using online learning</atitle><btitle>Proceedings of the 2013 International Symposium on Low Power Electronics and Design</btitle><date>2013-09-04</date><risdate>2013</risdate><spage>100</spage><epage>105</epage><pages>100-105</pages><isbn>1479912352</isbn><isbn>9781479912353</isbn><abstract>Eco-friendly energy sources (i.e. green power) attract great attention as lowering computer carbon footprint has become a necessity. Existing proposals on managing green energy powered systems show sub-optimal results since they either use rigid load power capping or heavily rely on backup power. We propose Chameleon, a novel adaptive green throughput server. Chameleon comprises of multiple flexible power management policies and leverages learning algorithm to select the optimal operating mode during runtime. The proposed design outperforms the state-of-the-art approach by 13% on performance, improves system MTBF by 42%, and still maintains up to 95% green energy utilization.</abstract><cop>Piscataway, NJ, USA</cop><pub>IEEE Press</pub><doi>10.5555/2648668.2648693</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISBN: 1479912352
ispartof Proceedings of the 2013 International Symposium on Low Power Electronics and Design, 2013, p.100-105
issn
language eng
recordid cdi_acm_books_10_5555_2648668_2648693
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied computing -- Physical sciences and engineering -- Electronics
Computer systems organization -- Architectures -- Distributed architectures -- Client-server architectures
Computer systems organization -- Dependable and fault-tolerant systems and networks
Computing methodologies -- Machine learning
General and reference -- Cross-computing tools and techniques -- Performance
Information systems -- Data management systems -- Middleware for databases -- Application servers
Information systems -- Data management systems -- Middleware for databases -- Database web servers
Networks -- Network performance evaluation
title Chameleon: adapting throughput server to time-varying green power budget using online learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chameleon:%20adapting%20throughput%20server%20to%20time-varying%20green%20power%20budget%20using%20online%20learning&rft.btitle=Proceedings%20of%20the%202013%20International%20Symposium%20on%20Low%20Power%20Electronics%20and%20Design&rft.au=Li,%20Chao&rft.date=2013-09-04&rft.spage=100&rft.epage=105&rft.pages=100-105&rft.isbn=1479912352&rft.isbn_list=9781479912353&rft_id=info:doi/10.5555/2648668.2648693&rft_dat=%3Cacm%3Eacm_books_10_5555_2648668_2648693%3C/acm%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true