Parallel information theory based construction of gene regulatory networks

We present a parallel method for construction of gene regulatorynetworks from large-scale gene expression data. Our method integratesmutual information, data processing inequality and statisticaltesting to detect significant dependencies between genes, and efficientlyexploits parallelism inherent in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zola, Jaroslaw, Aluru, Maneesha, Aluru, Srinivas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue
container_start_page 336
container_title
container_volume
creator Zola, Jaroslaw
Aluru, Maneesha
Aluru, Srinivas
description We present a parallel method for construction of gene regulatorynetworks from large-scale gene expression data. Our method integratesmutual information, data processing inequality and statisticaltesting to detect significant dependencies between genes, and efficientlyexploits parallelism inherent in such computations. We present a novelmethod to carry out permutation testing for assessing statistical significancewhile reducing its computational complexity by a factor of Θ(n2),where n is the number of genes. Using both synthetic and known regulatorynetworks, we show that our method produces networks of qualitysimilar to ARACNE, a widely used mutual information based method.We present a parallelization of the algorithm that, for the first time, allowsconstruction of whole genome networks from thousands of microarrayexperiments using rigorous mutual information based methodology.We report the construction of a 15,147 gene network of the plant Arabidopsisthaliana from 2,996 microarray experiments on a 2,048-CPUBlue Gene/L in 45 minutes, thus addressing a grand challenge problemin the NSF Arabidopsis 2010 initiative.
doi_str_mv 10.5555/1791889.1791926
format Conference Proceeding
fullrecord <record><control><sourceid>acm</sourceid><recordid>TN_cdi_acm_books_10_5555_1791889_1791926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>acm_books_10_5555_1791889_1791926</sourcerecordid><originalsourceid>FETCH-LOGICAL-a157t-78ad63f4702ead6fa406e891f5586ac9ee06dadb2287b8aa25067c2012394dfd3</originalsourceid><addsrcrecordid>eNqNj0tLxDAUhQMiqOOs3WbppjWPNo-lDD5GBnSh4K7cNjdjnU4DSQbx39vR_gDP5lw4Hxc-Qq44K-spN1xbbowtj22FOiEXsq6YscbK9zOyTOmTTZHcMGvOydMLRBgGHGg_-hD3kPsw0vyBIX7TFhI62oUx5Xjofpfg6RZHpBG3hwHykRoxf4W4S5fk1MOQcDn3grzd372uHovN88N6dbspgNc6F9qAU9JXmgmcLg8VU2gs93VtFHQWkSkHrhXC6NYAiJop3QnGhbSV804uyPXfX-j2TRvCLjWcNUf3ZnZvZvcJLf-JNm3s0csf63hceg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel information theory based construction of gene regulatory networks</title><source>Springer Books</source><creator>Zola, Jaroslaw ; Aluru, Maneesha ; Aluru, Srinivas</creator><contributor>Parashar, Manish ; Badrinath, Ramamurthy ; Sadayappan, Ponnuswamy ; Prasanna, Viktor K.</contributor><creatorcontrib>Zola, Jaroslaw ; Aluru, Maneesha ; Aluru, Srinivas ; Parashar, Manish ; Badrinath, Ramamurthy ; Sadayappan, Ponnuswamy ; Prasanna, Viktor K.</creatorcontrib><description>We present a parallel method for construction of gene regulatorynetworks from large-scale gene expression data. Our method integratesmutual information, data processing inequality and statisticaltesting to detect significant dependencies between genes, and efficientlyexploits parallelism inherent in such computations. We present a novelmethod to carry out permutation testing for assessing statistical significancewhile reducing its computational complexity by a factor of Θ(n2),where n is the number of genes. Using both synthetic and known regulatorynetworks, we show that our method produces networks of qualitysimilar to ARACNE, a widely used mutual information based method.We present a parallelization of the algorithm that, for the first time, allowsconstruction of whole genome networks from thousands of microarrayexperiments using rigorous mutual information based methodology.We report the construction of a 15,147 gene network of the plant Arabidopsisthaliana from 2,996 microarray experiments on a 2,048-CPUBlue Gene/L in 45 minutes, thus addressing a grand challenge problemin the NSF Arabidopsis 2010 initiative.</description><identifier>ISBN: 354089893X</identifier><identifier>ISBN: 9783540898931</identifier><identifier>DOI: 10.5555/1791889.1791926</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer-Verlag</publisher><subject>Applied computing ; Applied computing -- Life and medical sciences ; Applied computing -- Life and medical sciences -- Computational biology ; Applied computing -- Life and medical sciences -- Genetics ; Applied computing -- Life and medical sciences -- Systems biology ; Computing methodologies ; Computing methodologies -- Machine learning</subject><ispartof>Proceedings of the 15th international conference on High performance computing, 2008, p.336-349</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27902</link.rule.ids></links><search><contributor>Parashar, Manish</contributor><contributor>Badrinath, Ramamurthy</contributor><contributor>Sadayappan, Ponnuswamy</contributor><contributor>Prasanna, Viktor K.</contributor><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Aluru, Maneesha</creatorcontrib><creatorcontrib>Aluru, Srinivas</creatorcontrib><title>Parallel information theory based construction of gene regulatory networks</title><title>Proceedings of the 15th international conference on High performance computing</title><description>We present a parallel method for construction of gene regulatorynetworks from large-scale gene expression data. Our method integratesmutual information, data processing inequality and statisticaltesting to detect significant dependencies between genes, and efficientlyexploits parallelism inherent in such computations. We present a novelmethod to carry out permutation testing for assessing statistical significancewhile reducing its computational complexity by a factor of Θ(n2),where n is the number of genes. Using both synthetic and known regulatorynetworks, we show that our method produces networks of qualitysimilar to ARACNE, a widely used mutual information based method.We present a parallelization of the algorithm that, for the first time, allowsconstruction of whole genome networks from thousands of microarrayexperiments using rigorous mutual information based methodology.We report the construction of a 15,147 gene network of the plant Arabidopsisthaliana from 2,996 microarray experiments on a 2,048-CPUBlue Gene/L in 45 minutes, thus addressing a grand challenge problemin the NSF Arabidopsis 2010 initiative.</description><subject>Applied computing</subject><subject>Applied computing -- Life and medical sciences</subject><subject>Applied computing -- Life and medical sciences -- Computational biology</subject><subject>Applied computing -- Life and medical sciences -- Genetics</subject><subject>Applied computing -- Life and medical sciences -- Systems biology</subject><subject>Computing methodologies</subject><subject>Computing methodologies -- Machine learning</subject><isbn>354089893X</isbn><isbn>9783540898931</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2008</creationdate><recordtype>conference_proceeding</recordtype><sourceid/><recordid>eNqNj0tLxDAUhQMiqOOs3WbppjWPNo-lDD5GBnSh4K7cNjdjnU4DSQbx39vR_gDP5lw4Hxc-Qq44K-spN1xbbowtj22FOiEXsq6YscbK9zOyTOmTTZHcMGvOydMLRBgGHGg_-hD3kPsw0vyBIX7TFhI62oUx5Xjofpfg6RZHpBG3hwHykRoxf4W4S5fk1MOQcDn3grzd372uHovN88N6dbspgNc6F9qAU9JXmgmcLg8VU2gs93VtFHQWkSkHrhXC6NYAiJop3QnGhbSV804uyPXfX-j2TRvCLjWcNUf3ZnZvZvcJLf-JNm3s0csf63hceg</recordid><startdate>20081217</startdate><enddate>20081217</enddate><creator>Zola, Jaroslaw</creator><creator>Aluru, Maneesha</creator><creator>Aluru, Srinivas</creator><general>Springer-Verlag</general><scope/></search><sort><creationdate>20081217</creationdate><title>Parallel information theory based construction of gene regulatory networks</title><author>Zola, Jaroslaw ; Aluru, Maneesha ; Aluru, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a157t-78ad63f4702ead6fa406e891f5586ac9ee06dadb2287b8aa25067c2012394dfd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied computing</topic><topic>Applied computing -- Life and medical sciences</topic><topic>Applied computing -- Life and medical sciences -- Computational biology</topic><topic>Applied computing -- Life and medical sciences -- Genetics</topic><topic>Applied computing -- Life and medical sciences -- Systems biology</topic><topic>Computing methodologies</topic><topic>Computing methodologies -- Machine learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zola, Jaroslaw</creatorcontrib><creatorcontrib>Aluru, Maneesha</creatorcontrib><creatorcontrib>Aluru, Srinivas</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zola, Jaroslaw</au><au>Aluru, Maneesha</au><au>Aluru, Srinivas</au><au>Parashar, Manish</au><au>Badrinath, Ramamurthy</au><au>Sadayappan, Ponnuswamy</au><au>Prasanna, Viktor K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel information theory based construction of gene regulatory networks</atitle><btitle>Proceedings of the 15th international conference on High performance computing</btitle><date>2008-12-17</date><risdate>2008</risdate><spage>336</spage><epage>349</epage><pages>336-349</pages><isbn>354089893X</isbn><isbn>9783540898931</isbn><abstract>We present a parallel method for construction of gene regulatorynetworks from large-scale gene expression data. Our method integratesmutual information, data processing inequality and statisticaltesting to detect significant dependencies between genes, and efficientlyexploits parallelism inherent in such computations. We present a novelmethod to carry out permutation testing for assessing statistical significancewhile reducing its computational complexity by a factor of Θ(n2),where n is the number of genes. Using both synthetic and known regulatorynetworks, we show that our method produces networks of qualitysimilar to ARACNE, a widely used mutual information based method.We present a parallelization of the algorithm that, for the first time, allowsconstruction of whole genome networks from thousands of microarrayexperiments using rigorous mutual information based methodology.We report the construction of a 15,147 gene network of the plant Arabidopsisthaliana from 2,996 microarray experiments on a 2,048-CPUBlue Gene/L in 45 minutes, thus addressing a grand challenge problemin the NSF Arabidopsis 2010 initiative.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.5555/1791889.1791926</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISBN: 354089893X
ispartof Proceedings of the 15th international conference on High performance computing, 2008, p.336-349
issn
language eng
recordid cdi_acm_books_10_5555_1791889_1791926
source Springer Books
subjects Applied computing
Applied computing -- Life and medical sciences
Applied computing -- Life and medical sciences -- Computational biology
Applied computing -- Life and medical sciences -- Genetics
Applied computing -- Life and medical sciences -- Systems biology
Computing methodologies
Computing methodologies -- Machine learning
title Parallel information theory based construction of gene regulatory networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20information%20theory%20based%20construction%20of%20gene%20regulatory%20networks&rft.btitle=Proceedings%20of%20the%2015th%20international%20conference%20on%20High%20performance%20computing&rft.au=Zola,%20Jaroslaw&rft.date=2008-12-17&rft.spage=336&rft.epage=349&rft.pages=336-349&rft.isbn=354089893X&rft.isbn_list=9783540898931&rft_id=info:doi/10.5555/1791889.1791926&rft_dat=%3Cacm%3Eacm_books_10_5555_1791889_1791926%3C/acm%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true