Approximating free exercise boundaries for American-style options using simulation and optimization

Monte Carlo simulation can be readily applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo methods is independent of the number of state variables. This paper applies Monte Carlo simulation to the problem of determining fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cobb, Barry R., Charnes, John M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1644
container_issue
container_start_page 1637
container_title
container_volume
creator Cobb, Barry R.
Charnes, John M.
description Monte Carlo simulation can be readily applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo methods is independent of the number of state variables. This paper applies Monte Carlo simulation to the problem of determining free exercise boundaries for pricing American-style options. We use a simulation-optimization method to identify approximately optimal exercise thresholds that are defined by a minimal number of parameters. We demonstrate that asset prices calculated using this method are comparable to those found using other numerical asset pricing methods.
doi_str_mv 10.5555/1161734.1162038
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_acm_b</sourceid><recordid>TN_cdi_acm_books_10_5555_1161734_1162038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17525988</sourcerecordid><originalsourceid>FETCH-LOGICAL-a187t-6ead7e8779f8678eefa13088b646d80e783d52aa7dfbbb3aabec0619b05f706c3</originalsourceid><addsrcrecordid>eNqNUE1LAzEQDYig1J695iJ42Zo0u0n2WIofhYIXPYdJdiLR_SLZQuuvN_34AQ4DD968GeY9Qu45W1S5njiXXIlykXHJhL4i81pplltopaW6IfOUvlmuWpWlqG-JW41jHPahgyn0X9RHRIp7jC4kpHbY9Q3EgIn6IdJVhzE46Is0HVqkwziFoU90l46bKXS7Fo4Mhb45DbvweyLuyLWHNuH8gjPy-fL8sX4rtu-vm_VqWwDXaiokQqNQK1X7_KpG9MAF09rKUjaaodKiqZYAqvHWWgFg0THJa8sqr5h0YkYezndHSA5aH6HPNswYs7t4MFxVy6rWOusezzpwnbHD8JMMZ-aYn7nkZy75Zenin1Jjc05e_AFNPnOr</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating free exercise boundaries for American-style options using simulation and optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cobb, Barry R. ; Charnes, John M.</creator><creatorcontrib>Cobb, Barry R. ; Charnes, John M.</creatorcontrib><description>Monte Carlo simulation can be readily applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo methods is independent of the number of state variables. This paper applies Monte Carlo simulation to the problem of determining free exercise boundaries for pricing American-style options. We use a simulation-optimization method to identify approximately optimal exercise thresholds that are defined by a minimal number of parameters. We demonstrate that asset prices calculated using this method are comparable to those found using other numerical asset pricing methods.</description><identifier>ISBN: 9780780387867</identifier><identifier>ISBN: 0780387864</identifier><identifier>DOI: 10.5555/1161734.1162038</identifier><language>eng</language><publisher>Piscataway NJ: Winter Simulation Conference</publisher><subject>Applied computing ; Applied computing -- Enterprise computing ; Applied computing -- Enterprise computing -- Business process management ; Applied computing -- Law, social and behavioral sciences ; Applied computing -- Law, social and behavioral sciences -- Economics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematics of computing ; Mathematics of computing -- Probability and statistics ; Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms ; Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms -- Markov-chain Monte Carlo methods ; Simulation ; Software</subject><ispartof>Proceedings of the 36th conference on Winter simulation, 2004, p.1637-1644</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,780,784,789,790,4050,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17525988$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cobb, Barry R.</creatorcontrib><creatorcontrib>Charnes, John M.</creatorcontrib><title>Approximating free exercise boundaries for American-style options using simulation and optimization</title><title>Proceedings of the 36th conference on Winter simulation</title><description>Monte Carlo simulation can be readily applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo methods is independent of the number of state variables. This paper applies Monte Carlo simulation to the problem of determining free exercise boundaries for pricing American-style options. We use a simulation-optimization method to identify approximately optimal exercise thresholds that are defined by a minimal number of parameters. We demonstrate that asset prices calculated using this method are comparable to those found using other numerical asset pricing methods.</description><subject>Applied computing</subject><subject>Applied computing -- Enterprise computing</subject><subject>Applied computing -- Enterprise computing -- Business process management</subject><subject>Applied computing -- Law, social and behavioral sciences</subject><subject>Applied computing -- Law, social and behavioral sciences -- Economics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematics of computing</subject><subject>Mathematics of computing -- Probability and statistics</subject><subject>Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms</subject><subject>Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms -- Markov-chain Monte Carlo methods</subject><subject>Simulation</subject><subject>Software</subject><isbn>9780780387867</isbn><isbn>0780387864</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNqNUE1LAzEQDYig1J695iJ42Zo0u0n2WIofhYIXPYdJdiLR_SLZQuuvN_34AQ4DD968GeY9Qu45W1S5njiXXIlykXHJhL4i81pplltopaW6IfOUvlmuWpWlqG-JW41jHPahgyn0X9RHRIp7jC4kpHbY9Q3EgIn6IdJVhzE46Is0HVqkwziFoU90l46bKXS7Fo4Mhb45DbvweyLuyLWHNuH8gjPy-fL8sX4rtu-vm_VqWwDXaiokQqNQK1X7_KpG9MAF09rKUjaaodKiqZYAqvHWWgFg0THJa8sqr5h0YkYezndHSA5aH6HPNswYs7t4MFxVy6rWOusezzpwnbHD8JMMZ-aYn7nkZy75Zenin1Jjc05e_AFNPnOr</recordid><startdate>20041205</startdate><enddate>20041205</enddate><creator>Cobb, Barry R.</creator><creator>Charnes, John M.</creator><general>Winter Simulation Conference</general><general>IEEE</general><scope>IQODW</scope></search><sort><creationdate>20041205</creationdate><title>Approximating free exercise boundaries for American-style options using simulation and optimization</title><author>Cobb, Barry R. ; Charnes, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a187t-6ead7e8779f8678eefa13088b646d80e783d52aa7dfbbb3aabec0619b05f706c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied computing</topic><topic>Applied computing -- Enterprise computing</topic><topic>Applied computing -- Enterprise computing -- Business process management</topic><topic>Applied computing -- Law, social and behavioral sciences</topic><topic>Applied computing -- Law, social and behavioral sciences -- Economics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematics of computing</topic><topic>Mathematics of computing -- Probability and statistics</topic><topic>Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms</topic><topic>Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms -- Markov-chain Monte Carlo methods</topic><topic>Simulation</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Cobb, Barry R.</creatorcontrib><creatorcontrib>Charnes, John M.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cobb, Barry R.</au><au>Charnes, John M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating free exercise boundaries for American-style options using simulation and optimization</atitle><btitle>Proceedings of the 36th conference on Winter simulation</btitle><date>2004-12-05</date><risdate>2004</risdate><spage>1637</spage><epage>1644</epage><pages>1637-1644</pages><isbn>9780780387867</isbn><isbn>0780387864</isbn><abstract>Monte Carlo simulation can be readily applied to asset pricing problems with multiple state variables and possible path dependencies because convergence of Monte Carlo methods is independent of the number of state variables. This paper applies Monte Carlo simulation to the problem of determining free exercise boundaries for pricing American-style options. We use a simulation-optimization method to identify approximately optimal exercise thresholds that are defined by a minimal number of parameters. We demonstrate that asset prices calculated using this method are comparable to those found using other numerical asset pricing methods.</abstract><cop>Piscataway NJ</cop><pub>Winter Simulation Conference</pub><doi>10.5555/1161734.1162038</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISBN: 9780780387867
ispartof Proceedings of the 36th conference on Winter simulation, 2004, p.1637-1644
issn
language eng
recordid cdi_acm_books_10_5555_1161734_1162038
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied computing
Applied computing -- Enterprise computing
Applied computing -- Enterprise computing -- Business process management
Applied computing -- Law, social and behavioral sciences
Applied computing -- Law, social and behavioral sciences -- Economics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Mathematics of computing
Mathematics of computing -- Probability and statistics
Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms
Mathematics of computing -- Probability and statistics -- Probabilistic reasoning algorithms -- Markov-chain Monte Carlo methods
Simulation
Software
title Approximating free exercise boundaries for American-style options using simulation and optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_acm_b&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20free%20exercise%20boundaries%20for%20American-style%20options%20using%20simulation%20and%20optimization&rft.btitle=Proceedings%20of%20the%2036th%20conference%20on%20Winter%20simulation&rft.au=Cobb,%20Barry%20R.&rft.date=2004-12-05&rft.spage=1637&rft.epage=1644&rft.pages=1637-1644&rft.isbn=9780780387867&rft.isbn_list=0780387864&rft_id=info:doi/10.5555/1161734.1162038&rft_dat=%3Cpascalfrancis_acm_b%3E17525988%3C/pascalfrancis_acm_b%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true