Tunable sensors for process-aware voltage scaling

VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chan, Tuck-Boon, Kahng, Andrew B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 7
container_title
container_volume
creator Chan, Tuck-Boon
Kahng, Andrew B.
description VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.
doi_str_mv 10.1145/2429384.2429387
format Conference Proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1145_2429384_2429387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6386582</ieee_id><sourcerecordid>acm_books_10_1145_2429384_2429387</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-e1734e693662f9b55dea78fe8f28998e13bef28fdcd88b01fa8a0a4c3df58f213</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhc1LoiqdGVgysqT4-hFfj6iigFSJpcyWk1xXgbSp7ALi32PUTExM51x9n-5wGLsGPgdQ-k4oYSWq-THNCZtZgxlwCdpIe8omoDWWQkl19oedZ8atKPMlLtkspTfOOYBEbcSEwfpj5-ueikS7NMRUhCEW-zg0lFLpv3yk4nPoD36Tjcb33W5zxS6C7xPNxpyy1-XDevFUrl4enxf3q9ILxENJYKSiysqqEsHWWrfkDQbCINBaJJA15RrapkWsOQSPnnvVyDbo7ICcspvj346I3D52Wx-_XSWx0igyvT1S32xdPQzvyQF3v1u5casxTVbn_1RdHTsK8gfY0mI-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tunable sensors for process-aware voltage scaling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chan, Tuck-Boon ; Kahng, Andrew B.</creator><creatorcontrib>Chan, Tuck-Boon ; Kahng, Andrew B.</creatorcontrib><description>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</description><identifier>ISSN: 1092-3152</identifier><identifier>ISBN: 9781450315739</identifier><identifier>ISBN: 1450315739</identifier><identifier>EISSN: 1558-2434</identifier><identifier>EISBN: 9781450315739</identifier><identifier>EISBN: 1450315739</identifier><identifier>DOI: 10.1145/2429384.2429387</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design ; Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design ; Frequency measurement ; Hardware -- Emerging technologies ; Hardware -- Hardware validation ; Hardware -- Very large scale integration design ; Monitoring ; Resistance ; Sensors ; Silicon ; System-on-a-chip ; Voltage measurement</subject><ispartof>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012, p.7-14</ispartof><rights>2012 ACM</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6386582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6386582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, Tuck-Boon</creatorcontrib><creatorcontrib>Kahng, Andrew B.</creatorcontrib><title>Tunable sensors for process-aware voltage scaling</title><title>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)</title><addtitle>ICCAD</addtitle><description>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</description><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</subject><subject>Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design</subject><subject>Frequency measurement</subject><subject>Hardware -- Emerging technologies</subject><subject>Hardware -- Hardware validation</subject><subject>Hardware -- Very large scale integration design</subject><subject>Monitoring</subject><subject>Resistance</subject><subject>Sensors</subject><subject>Silicon</subject><subject>System-on-a-chip</subject><subject>Voltage measurement</subject><issn>1092-3152</issn><issn>1558-2434</issn><isbn>9781450315739</isbn><isbn>1450315739</isbn><isbn>9781450315739</isbn><isbn>1450315739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkDtPwzAUhc1LoiqdGVgysqT4-hFfj6iigFSJpcyWk1xXgbSp7ALi32PUTExM51x9n-5wGLsGPgdQ-k4oYSWq-THNCZtZgxlwCdpIe8omoDWWQkl19oedZ8atKPMlLtkspTfOOYBEbcSEwfpj5-ueikS7NMRUhCEW-zg0lFLpv3yk4nPoD36Tjcb33W5zxS6C7xPNxpyy1-XDevFUrl4enxf3q9ILxENJYKSiysqqEsHWWrfkDQbCINBaJJA15RrapkWsOQSPnnvVyDbo7ICcspvj346I3D52Wx-_XSWx0igyvT1S32xdPQzvyQF3v1u5casxTVbn_1RdHTsK8gfY0mI-</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chan, Tuck-Boon</creator><creator>Kahng, Andrew B.</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Tunable sensors for process-aware voltage scaling</title><author>Chan, Tuck-Boon ; Kahng, Andrew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-e1734e693662f9b55dea78fe8f28998e13bef28fdcd88b01fa8a0a4c3df58f213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</topic><topic>Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design</topic><topic>Frequency measurement</topic><topic>Hardware -- Emerging technologies</topic><topic>Hardware -- Hardware validation</topic><topic>Hardware -- Very large scale integration design</topic><topic>Monitoring</topic><topic>Resistance</topic><topic>Sensors</topic><topic>Silicon</topic><topic>System-on-a-chip</topic><topic>Voltage measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Chan, Tuck-Boon</creatorcontrib><creatorcontrib>Kahng, Andrew B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Tuck-Boon</au><au>Kahng, Andrew B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tunable sensors for process-aware voltage scaling</atitle><btitle>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)</btitle><stitle>ICCAD</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>7</spage><epage>14</epage><pages>7-14</pages><issn>1092-3152</issn><eissn>1558-2434</eissn><isbn>9781450315739</isbn><isbn>1450315739</isbn><eisbn>9781450315739</eisbn><eisbn>1450315739</eisbn><abstract>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/2429384.2429387</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1092-3152
ispartof 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012, p.7-14
issn 1092-3152
1558-2434
language eng
recordid cdi_acm_books_10_1145_2429384_2429387
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design
Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design
Frequency measurement
Hardware -- Emerging technologies
Hardware -- Hardware validation
Hardware -- Very large scale integration design
Monitoring
Resistance
Sensors
Silicon
System-on-a-chip
Voltage measurement
title Tunable sensors for process-aware voltage scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tunable%20sensors%20for%20process-aware%20voltage%20scaling&rft.btitle=2012%20IEEE/ACM%20International%20Conference%20on%20Computer-Aided%20Design%20(ICCAD)&rft.au=Chan,%20Tuck-Boon&rft.date=2012-01-01&rft.spage=7&rft.epage=14&rft.pages=7-14&rft.issn=1092-3152&rft.eissn=1558-2434&rft.isbn=9781450315739&rft.isbn_list=1450315739&rft_id=info:doi/10.1145/2429384.2429387&rft_dat=%3Cacm_6IE%3Eacm_books_10_1145_2429384_2429387%3C/acm_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781450315739&rft.eisbn_list=1450315739&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6386582&rfr_iscdi=true