Tunable sensors for process-aware voltage scaling
VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | |
container_volume | |
creator | Chan, Tuck-Boon Kahng, Andrew B. |
description | VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow. |
doi_str_mv | 10.1145/2429384.2429387 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_acm_books_10_1145_2429384_2429387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6386582</ieee_id><sourcerecordid>acm_books_10_1145_2429384_2429387</sourcerecordid><originalsourceid>FETCH-LOGICAL-a288t-e1734e693662f9b55dea78fe8f28998e13bef28fdcd88b01fa8a0a4c3df58f213</originalsourceid><addsrcrecordid>eNqNkDtPwzAUhc1LoiqdGVgysqT4-hFfj6iigFSJpcyWk1xXgbSp7ALi32PUTExM51x9n-5wGLsGPgdQ-k4oYSWq-THNCZtZgxlwCdpIe8omoDWWQkl19oedZ8atKPMlLtkspTfOOYBEbcSEwfpj5-ueikS7NMRUhCEW-zg0lFLpv3yk4nPoD36Tjcb33W5zxS6C7xPNxpyy1-XDevFUrl4enxf3q9ILxENJYKSiysqqEsHWWrfkDQbCINBaJJA15RrapkWsOQSPnnvVyDbo7ICcspvj346I3D52Wx-_XSWx0igyvT1S32xdPQzvyQF3v1u5casxTVbn_1RdHTsK8gfY0mI-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tunable sensors for process-aware voltage scaling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chan, Tuck-Boon ; Kahng, Andrew B.</creator><creatorcontrib>Chan, Tuck-Boon ; Kahng, Andrew B.</creatorcontrib><description>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</description><identifier>ISSN: 1092-3152</identifier><identifier>ISBN: 9781450315739</identifier><identifier>ISBN: 1450315739</identifier><identifier>EISSN: 1558-2434</identifier><identifier>EISBN: 9781450315739</identifier><identifier>EISBN: 1450315739</identifier><identifier>DOI: 10.1145/2429384.2429387</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design ; Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design ; Frequency measurement ; Hardware -- Emerging technologies ; Hardware -- Hardware validation ; Hardware -- Very large scale integration design ; Monitoring ; Resistance ; Sensors ; Silicon ; System-on-a-chip ; Voltage measurement</subject><ispartof>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012, p.7-14</ispartof><rights>2012 ACM</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6386582$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6386582$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chan, Tuck-Boon</creatorcontrib><creatorcontrib>Kahng, Andrew B.</creatorcontrib><title>Tunable sensors for process-aware voltage scaling</title><title>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)</title><addtitle>ICCAD</addtitle><description>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</description><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</subject><subject>Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design</subject><subject>Frequency measurement</subject><subject>Hardware -- Emerging technologies</subject><subject>Hardware -- Hardware validation</subject><subject>Hardware -- Very large scale integration design</subject><subject>Monitoring</subject><subject>Resistance</subject><subject>Sensors</subject><subject>Silicon</subject><subject>System-on-a-chip</subject><subject>Voltage measurement</subject><issn>1092-3152</issn><issn>1558-2434</issn><isbn>9781450315739</isbn><isbn>1450315739</isbn><isbn>9781450315739</isbn><isbn>1450315739</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkDtPwzAUhc1LoiqdGVgysqT4-hFfj6iigFSJpcyWk1xXgbSp7ALi32PUTExM51x9n-5wGLsGPgdQ-k4oYSWq-THNCZtZgxlwCdpIe8omoDWWQkl19oedZ8atKPMlLtkspTfOOYBEbcSEwfpj5-ueikS7NMRUhCEW-zg0lFLpv3yk4nPoD36Tjcb33W5zxS6C7xPNxpyy1-XDevFUrl4enxf3q9ILxENJYKSiysqqEsHWWrfkDQbCINBaJJA15RrapkWsOQSPnnvVyDbo7ICcspvj346I3D52Wx-_XSWx0igyvT1S32xdPQzvyQF3v1u5casxTVbn_1RdHTsK8gfY0mI-</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Chan, Tuck-Boon</creator><creator>Kahng, Andrew B.</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Tunable sensors for process-aware voltage scaling</title><author>Chan, Tuck-Boon ; Kahng, Andrew B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a288t-e1734e693662f9b55dea78fe8f28998e13bef28fdcd88b01fa8a0a4c3df58f213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</topic><topic>Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design</topic><topic>Frequency measurement</topic><topic>Hardware -- Emerging technologies</topic><topic>Hardware -- Hardware validation</topic><topic>Hardware -- Very large scale integration design</topic><topic>Monitoring</topic><topic>Resistance</topic><topic>Sensors</topic><topic>Silicon</topic><topic>System-on-a-chip</topic><topic>Voltage measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Chan, Tuck-Boon</creatorcontrib><creatorcontrib>Kahng, Andrew B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, Tuck-Boon</au><au>Kahng, Andrew B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tunable sensors for process-aware voltage scaling</atitle><btitle>2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)</btitle><stitle>ICCAD</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>7</spage><epage>14</epage><pages>7-14</pages><issn>1092-3152</issn><eissn>1558-2434</eissn><isbn>9781450315739</isbn><isbn>1450315739</isbn><eisbn>9781450315739</eisbn><eisbn>1450315739</eisbn><abstract>VLSI circuits usually allocate excess margin to account for worst-case process variation. Since most chips are fabricated at process conditions better than the worst-case corner, adaptive voltage scaling (AVS) is commonly used to reduce power consumption whenever possible. A typical AVS setup relies on a performance monitor that replicates critical paths of the circuit to guide voltage scaling. However, it is difficult to define appropriate critical paths for an SoC which has multiple operating modes and IPs. In this paper, we propose a different methodology for AVS which matches the voltage scaling characteristics of a circuit rather than the delays of critical paths. This fundamental change in monitoring strategy simplifies the monitoring circuitry as well as the calibration flow of conventional monitoring methods. To enable the proposed methodology, we study voltage scaling characteristics of digital circuits. Based on our analyses, we develop design guidelines as well as design monitoring circuits which have tunable voltage scaling characteristics. Our experimental results show that this methodology can be used for AVS with a simplified calibration flow.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/2429384.2429387</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1092-3152 |
ispartof | 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012, p.7-14 |
issn | 1092-3152 1558-2434 |
language | eng |
recordid | cdi_acm_books_10_1145_2429384_2429387 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design Applied computing -- Physical sciences and engineering -- Engineering -- Computer-aided design Frequency measurement Hardware -- Emerging technologies Hardware -- Hardware validation Hardware -- Very large scale integration design Monitoring Resistance Sensors Silicon System-on-a-chip Voltage measurement |
title | Tunable sensors for process-aware voltage scaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tunable%20sensors%20for%20process-aware%20voltage%20scaling&rft.btitle=2012%20IEEE/ACM%20International%20Conference%20on%20Computer-Aided%20Design%20(ICCAD)&rft.au=Chan,%20Tuck-Boon&rft.date=2012-01-01&rft.spage=7&rft.epage=14&rft.pages=7-14&rft.issn=1092-3152&rft.eissn=1558-2434&rft.isbn=9781450315739&rft.isbn_list=1450315739&rft_id=info:doi/10.1145/2429384.2429387&rft_dat=%3Cacm_6IE%3Eacm_books_10_1145_2429384_2429387%3C/acm_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781450315739&rft.eisbn_list=1450315739&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6386582&rfr_iscdi=true |