Universal distributed sensing via random projections
This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 177 |
container_title | |
container_volume | |
creator | Duarte, Marco F. Wakin, Michael B. Baron, Dror Baraniuk, Richard G. |
description | This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter-sensor collaboration. We apply our framework to several real world datasets to validate the framework. |
doi_str_mv | 10.1145/1127777.1127807 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_acm_books_10_1145_1127777_1127807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1662456</ieee_id><sourcerecordid>31415785</sourcerecordid><originalsourceid>FETCH-LOGICAL-a319t-6bc39e69eb66333f25125a959ddba15b992395dd51847e920a0a5ef202ba5ef03</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhQMiKHXWLtzMSty05uY1k6UUX1BwY9chmdyR1HnUZKbgvzel_QGezVncj3sOh5BboCsAIR8BWJW1OnpNqwtS6KoGqaXmnIv6ihQp7WgW1xIqdk3EdggHjMl2pQ9pisHNE_oy4ZDC8FUegi2jHfzYl_s47rCZwjikG3LZ2i5hcfYF2b48f67flpuP1_f102ZpOehpqVzDNSqNTqkc3zIJTNrcxXtnQTqtWa7hvYRaVKgZtdRKbBll7uiUL8j96W_O_pkxTaYPqcGuswOOczIcBMiqlhm8O4EBEc0-ht7GXwNKMSFVvj6crrbpjRvH72SAmuNe5ryXOe-V0dU_UeNiwJb_AQWaacU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>31415785</pqid></control><display><type>conference_proceeding</type><title>Universal distributed sensing via random projections</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Duarte, Marco F. ; Wakin, Michael B. ; Baron, Dror ; Baraniuk, Richard G.</creator><creatorcontrib>Duarte, Marco F. ; Wakin, Michael B. ; Baron, Dror ; Baraniuk, Richard G.</creatorcontrib><description>This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter-sensor collaboration. We apply our framework to several real world datasets to validate the framework.</description><identifier>ISBN: 9781595933348</identifier><identifier>ISBN: 1595933344</identifier><identifier>DOI: 10.1145/1127777.1127807</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing -- Physical sciences and engineering -- Engineering ; Collaboration ; Compressed sensing ; Computer networks ; correlation ; Data engineering ; Design engineering ; Distributed control ; greedy algorithms ; Information systems -- Data management systems -- Data structures -- Data layout -- Data compression ; Intelligent sensors ; linear programming ; Loss measurement ; sensor networks ; Sensor phenomena and characterization ; Sparsity ; Wireless sensor networks</subject><ispartof>2006 5th International Conference on Information Processing in Sensor Networks, 2006, p.177-185</ispartof><rights>2006 ACM</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1662456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1662456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duarte, Marco F.</creatorcontrib><creatorcontrib>Wakin, Michael B.</creatorcontrib><creatorcontrib>Baron, Dror</creatorcontrib><creatorcontrib>Baraniuk, Richard G.</creatorcontrib><title>Universal distributed sensing via random projections</title><title>2006 5th International Conference on Information Processing in Sensor Networks</title><addtitle>IPSN</addtitle><description>This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter-sensor collaboration. We apply our framework to several real world datasets to validate the framework.</description><subject>Applied computing -- Physical sciences and engineering -- Engineering</subject><subject>Collaboration</subject><subject>Compressed sensing</subject><subject>Computer networks</subject><subject>correlation</subject><subject>Data engineering</subject><subject>Design engineering</subject><subject>Distributed control</subject><subject>greedy algorithms</subject><subject>Information systems -- Data management systems -- Data structures -- Data layout -- Data compression</subject><subject>Intelligent sensors</subject><subject>linear programming</subject><subject>Loss measurement</subject><subject>sensor networks</subject><subject>Sensor phenomena and characterization</subject><subject>Sparsity</subject><subject>Wireless sensor networks</subject><isbn>9781595933348</isbn><isbn>1595933344</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2006</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkEtLAzEUhQMiKHXWLtzMSty05uY1k6UUX1BwY9chmdyR1HnUZKbgvzel_QGezVncj3sOh5BboCsAIR8BWJW1OnpNqwtS6KoGqaXmnIv6ihQp7WgW1xIqdk3EdggHjMl2pQ9pisHNE_oy4ZDC8FUegi2jHfzYl_s47rCZwjikG3LZ2i5hcfYF2b48f67flpuP1_f102ZpOehpqVzDNSqNTqkc3zIJTNrcxXtnQTqtWa7hvYRaVKgZtdRKbBll7uiUL8j96W_O_pkxTaYPqcGuswOOczIcBMiqlhm8O4EBEc0-ht7GXwNKMSFVvj6crrbpjRvH72SAmuNe5ryXOe-V0dU_UeNiwJb_AQWaacU</recordid><startdate>20060419</startdate><enddate>20060419</enddate><creator>Duarte, Marco F.</creator><creator>Wakin, Michael B.</creator><creator>Baron, Dror</creator><creator>Baraniuk, Richard G.</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060419</creationdate><title>Universal distributed sensing via random projections</title><author>Duarte, Marco F. ; Wakin, Michael B. ; Baron, Dror ; Baraniuk, Richard G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a319t-6bc39e69eb66333f25125a959ddba15b992395dd51847e920a0a5ef202ba5ef03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied computing -- Physical sciences and engineering -- Engineering</topic><topic>Collaboration</topic><topic>Compressed sensing</topic><topic>Computer networks</topic><topic>correlation</topic><topic>Data engineering</topic><topic>Design engineering</topic><topic>Distributed control</topic><topic>greedy algorithms</topic><topic>Information systems -- Data management systems -- Data structures -- Data layout -- Data compression</topic><topic>Intelligent sensors</topic><topic>linear programming</topic><topic>Loss measurement</topic><topic>sensor networks</topic><topic>Sensor phenomena and characterization</topic><topic>Sparsity</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Duarte, Marco F.</creatorcontrib><creatorcontrib>Wakin, Michael B.</creatorcontrib><creatorcontrib>Baron, Dror</creatorcontrib><creatorcontrib>Baraniuk, Richard G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duarte, Marco F.</au><au>Wakin, Michael B.</au><au>Baron, Dror</au><au>Baraniuk, Richard G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Universal distributed sensing via random projections</atitle><btitle>2006 5th International Conference on Information Processing in Sensor Networks</btitle><stitle>IPSN</stitle><date>2006-04-19</date><risdate>2006</risdate><spage>177</spage><epage>185</epage><pages>177-185</pages><isbn>9781595933348</isbn><isbn>1595933344</isbn><abstract>This paper develops a new framework for distributed coding and compression in sensor networks based on distributed compressed sensing (DCS). DCS exploits both intra-signal and inter-signal correlations through the concept of joint sparsity; just a few measurements of a jointly sparse signal ensemble contain enough information for reconstruction. DCS is well-suited for sensor network applications, thanks to its simplicity, universality, computational asymmetry, tolerance to quantization and noise, robustness to measurement loss, and scalability. It also requires absolutely no inter-sensor collaboration. We apply our framework to several real world datasets to validate the framework.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/1127777.1127807</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781595933348 |
ispartof | 2006 5th International Conference on Information Processing in Sensor Networks, 2006, p.177-185 |
issn | |
language | eng |
recordid | cdi_acm_books_10_1145_1127777_1127807 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied computing -- Physical sciences and engineering -- Engineering Collaboration Compressed sensing Computer networks correlation Data engineering Design engineering Distributed control greedy algorithms Information systems -- Data management systems -- Data structures -- Data layout -- Data compression Intelligent sensors linear programming Loss measurement sensor networks Sensor phenomena and characterization Sparsity Wireless sensor networks |
title | Universal distributed sensing via random projections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Universal%20distributed%20sensing%20via%20random%20projections&rft.btitle=2006%205th%20International%20Conference%20on%20Information%20Processing%20in%20Sensor%20Networks&rft.au=Duarte,%20Marco%20F.&rft.date=2006-04-19&rft.spage=177&rft.epage=185&rft.pages=177-185&rft.isbn=9781595933348&rft.isbn_list=1595933344&rft_id=info:doi/10.1145/1127777.1127807&rft_dat=%3Cproquest_6IE%3E31415785%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31415785&rft_id=info:pmid/&rft_ieee_id=1662456&rfr_iscdi=true |