Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli
Afin de préserver leur niche de vie, les bactéries produisent et sécrètent des antibiotiques avec des propriétés génotoxiques. Divers processus moléculaires maintiennent l’intégrité génomique de tous les organismes vivants. Ces évènements sont primordiaux car la structure de l’ADN est endommagée en...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Camus, Adrien |
description | Afin de préserver leur niche de vie, les bactéries produisent et sécrètent des antibiotiques avec des propriétés génotoxiques. Divers processus moléculaires maintiennent l’intégrité génomique de tous les organismes vivants. Ces évènements sont primordiaux car la structure de l’ADN est endommagée en permanence par le métabolisme cellulaire (tel que le stress oxydatif ou lors de sa réplication), ou d’autres agents de l’environnement. Les antibiotiques sont utilisés pour des applications cliniques afin de traiter les infections ou le cancer. Dans le travail ici présenté, nous analysons la réponse au stress génomique (GSR) induit par deux antibiotiques génotoxiques : la Bléomycine (BLM) et la Mitomycine-C (MMC). Ces deux antibiotiques altèrent l’ADN de différentes manières tout en conduisant à des cassures doubles brins (DSB). Les DSB sont suspectées d’être la cause principale de la mort cellulaire. Les DSB sont réparées par recombinaison homologue (HR). Des études récentes ont révélé que la HR est essentielle pour survivre aux lésions causées par la BLM et la MMC. Les premiers travaux sur le sujet, ainsi que les premiers modèles présentés dans les livres d’éducation, attribuent une voie de réparation particulière, selon le type de lésion à l’ADN. La protéine RecN, induite par le régulons SOS, joue un rôle important dans la réparation de l’ADN et le traitement des lésions générées par ces deux antibiotiques. Cependant, la fonction de RecN dans ces deux processus n’est pas clairement comprise. RecN est une protéine qui joue un rôle dans la maintenance structurelle du chromosome (SMC). Elle se lie sur de l’ADN simple brin (ADNsb) (et qui peut attraper une seconde molécule d’ADN ?). In vitro, RecN stimule la ligation de molécules d’ADN. In vivo, RecN arrête la ségrégation des chromatides soeurs, et induit une compaction extrême du nucléoide. La sur-expression de RecN est toxique pour les cellules et son niveau est régulé par l’enzyme ClpXP, faisant partie du protéasome. RecN interagit avec RecA, toutes deux sont requises pour survivre aux DSB induites par l’endonucléase I-SCE 1. Elles sont généralement associées dans le même groupe épistatique. Des résultats récents suggèrent que RecA et RecN pourraient également avoir des voies d’actions distinctes, toutes deux importantes pour la réparation de l’ADN. Dans l’étude que l’on présente, nous avons utilisé à notre avantage, son implication dans le processus de réparation de deux types de lésions, pour questionner l’i |
format | Dissertation |
fullrecord | <record><control><sourceid>abes_RS3</sourceid><recordid>TN_cdi_abes_theses_2022UPSLE029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022UPSLE029</sourcerecordid><originalsourceid>FETCH-abes_theses_2022UPSLE0293</originalsourceid><addsrcrecordid>eNrjZOg83FlSmpKqcHhlQWZxSWJJZmFpqgKQH5Sa7KejkFoCZBcr5GSm5hUrpOaVFKUq5CQqJOdnHF5ZnJmfB5ZMzijKzwVqBLGLj04uLSqGaAOpLAIam1gElASrVch51DDT0cUPqCW1SsG1GEgVZSZnZIJMzMnkYWBNS8wpTuWF0twM8m6uIc4euolJqcXxJRmpxUDKyMDIKDQg2MfVwMjSmLAKAHGqTcc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli</title><source>Theses.fr</source><creator>Camus, Adrien</creator><creatorcontrib>Camus, Adrien</creatorcontrib><description>Afin de préserver leur niche de vie, les bactéries produisent et sécrètent des antibiotiques avec des propriétés génotoxiques. Divers processus moléculaires maintiennent l’intégrité génomique de tous les organismes vivants. Ces évènements sont primordiaux car la structure de l’ADN est endommagée en permanence par le métabolisme cellulaire (tel que le stress oxydatif ou lors de sa réplication), ou d’autres agents de l’environnement. Les antibiotiques sont utilisés pour des applications cliniques afin de traiter les infections ou le cancer. Dans le travail ici présenté, nous analysons la réponse au stress génomique (GSR) induit par deux antibiotiques génotoxiques : la Bléomycine (BLM) et la Mitomycine-C (MMC). Ces deux antibiotiques altèrent l’ADN de différentes manières tout en conduisant à des cassures doubles brins (DSB). Les DSB sont suspectées d’être la cause principale de la mort cellulaire. Les DSB sont réparées par recombinaison homologue (HR). Des études récentes ont révélé que la HR est essentielle pour survivre aux lésions causées par la BLM et la MMC. Les premiers travaux sur le sujet, ainsi que les premiers modèles présentés dans les livres d’éducation, attribuent une voie de réparation particulière, selon le type de lésion à l’ADN. La protéine RecN, induite par le régulons SOS, joue un rôle important dans la réparation de l’ADN et le traitement des lésions générées par ces deux antibiotiques. Cependant, la fonction de RecN dans ces deux processus n’est pas clairement comprise. RecN est une protéine qui joue un rôle dans la maintenance structurelle du chromosome (SMC). Elle se lie sur de l’ADN simple brin (ADNsb) (et qui peut attraper une seconde molécule d’ADN ?). In vitro, RecN stimule la ligation de molécules d’ADN. In vivo, RecN arrête la ségrégation des chromatides soeurs, et induit une compaction extrême du nucléoide. La sur-expression de RecN est toxique pour les cellules et son niveau est régulé par l’enzyme ClpXP, faisant partie du protéasome. RecN interagit avec RecA, toutes deux sont requises pour survivre aux DSB induites par l’endonucléase I-SCE 1. Elles sont généralement associées dans le même groupe épistatique. Des résultats récents suggèrent que RecA et RecN pourraient également avoir des voies d’actions distinctes, toutes deux importantes pour la réparation de l’ADN. Dans l’étude que l’on présente, nous avons utilisé à notre avantage, son implication dans le processus de réparation de deux types de lésions, pour questionner l’implication de RecN dans la réponse génomique au stress (GSR). Nous avons démontré que la dynamique des chromatides soeurs et que le changement de conformation du nucléoïde induit par RecN, est différent selon l’antibiotique utilisé. En présence de lésions induites par la MMC, RecN est requise en pre-traitement des lésions par « réparation par excision de nucléotide » (NER), et son activité sur les chromatides soeurs se manifeste tôt dans le processus de réparation. A l’inverse, en présence de lésions induites par la BLM, l’activité de RecN ne nécessite pas de traitement par le NER, et se manifeste plus tard, durant les phases de récupération. L’analyse par transposition insertion (TIS) a révélé que recN est un des rares gènes du SOS impliqué dans le GSR des deux antibiotiques. L’absence de RecN perturbe grandement le GSR, notamment par l’augmentation de la pression sur le système de réparation par excision de base (BER), tout en réduisant l’importance de la HR. L’analyse du TIS a également mis en évidence, l’implication extrême de multiples voies telles que : les pompes à efflux, la gestion du stress oxydatif, et le contrôle du cycle cellulaire, pour permettre une récupération de l’altération des dommages à l’ADN. L’activité de RecN est un point de bascule entre différentes solutions de réparation. Plus généralement, ce travail illustre que le GSR est un processus intégré que la cellule déploie pour générer les conditions de sa survie.
To preserve their niche, bacteria frequently produce and secrete antibiotics with genotoxic properties. Molecular processes that maintain genomic integrity are essential for all organisms. This is necessary because DNA damage can arise during every round of genome duplications. These antibiotics have been used for clinical application to treat infections or cancers. In the present work, we analyzed the Genomic Stress Response (GSR) induced by two genotoxic antibiotics: Bleomycin (BLM) and Mitomycin C (MMC). Although MMC and BLM alter DNA in different ways, they both lead to double strand breaks (DSB). The DSBs are suspected to be the major cause of cell death repaired by homologous recombination (HR). Earlier studies revealed that HR is essential to bacteria to survive BLM and MMC toxicity. Pioneer works and recent textbooks tend to attribute a particular DNA damage response (DDR) to each type of lesions. The RecN protein, induced by the SOS regulon, appeared to play important roles in the processing and repair of DNA lesions generated by MMC and BLM. However, the function of RecN in these two repair processes is not yet understood. RecN is a structural maintenance chromosome (SMC)-like protein that binds on single strand DNA where it can catch a second DNA molecule. In vitro, RecN stimulates the ligation of DNA molecules. In vivo, RecN prevents sister chromatid segregation and promotes an extreme nucleoid compaction. RecN overexpression is toxic for the cell and its level is regulated by ClpXP proteasome. Because RecN interacts with RecA and both are equally required to survive I-SCE 1 mediated DSB, they are generally associated in the same epistatic group. However, recent data suggest that RecA and RecN may also function in genetically distinct pathways, important for the DNA repair. In the present study, we took advantage of RecN involvement in the repair of two different types of DNA lesions to investigate the GSR. We demonstrated that sister chromatid dynamics and nucleoid management by RecN differ according to the drug considered. In presence of MMC-induced lesions, RecN requires a pre-processing of the lesions by the nucleotid excision repair (NER) and its activity on sister chromatids occurs early in the repair process. By contrast, in presence of BLM-induced lesions, RecN activity does not require NER processing and occurs later in the recovery phase. Transposition insertion (TIS) analysis revealed that recN is one of the rare DDR genes involved in the GSR of both drugs. A lack of RecN significantly disturbed the GSR, by increasing notably the pressure on the base excision repair (BER) pathway, while reducing concomitantly the importance of homologous recombination. The TIS analysis also highlighted how important drug tolerance pathways such as: efflux systems, oxidative stress management and cell cycle controllers, are for successful recovery from DNA alterations. Moreover, RecN activity influences the balance between different solutions. More generally, this work illustrates that GSR is an integrated process that cells adopt to create the most appropriate conditions for their survival.</description><language>fre</language><subject>Blemoycin ; Bléomycine ; Cohésion des chromatides soeurs ; Escherichia coli ; Homologous recombination ; Mitomycin-C ; Mitomycine-C ; Nucleotide excision repair ; RecN ; Recombinaison homologue ; Réparation par excision de nucléotides ; Sister chromatids cohesion</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,311,780,885,26981</link.rule.ids><linktorsrc>$$Uhttps://www.theses.fr/2022UPSLE029/document$$EView_record_in_ABES$$FView_record_in_$$GABES$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Camus, Adrien</creatorcontrib><title>Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli</title><description>Afin de préserver leur niche de vie, les bactéries produisent et sécrètent des antibiotiques avec des propriétés génotoxiques. Divers processus moléculaires maintiennent l’intégrité génomique de tous les organismes vivants. Ces évènements sont primordiaux car la structure de l’ADN est endommagée en permanence par le métabolisme cellulaire (tel que le stress oxydatif ou lors de sa réplication), ou d’autres agents de l’environnement. Les antibiotiques sont utilisés pour des applications cliniques afin de traiter les infections ou le cancer. Dans le travail ici présenté, nous analysons la réponse au stress génomique (GSR) induit par deux antibiotiques génotoxiques : la Bléomycine (BLM) et la Mitomycine-C (MMC). Ces deux antibiotiques altèrent l’ADN de différentes manières tout en conduisant à des cassures doubles brins (DSB). Les DSB sont suspectées d’être la cause principale de la mort cellulaire. Les DSB sont réparées par recombinaison homologue (HR). Des études récentes ont révélé que la HR est essentielle pour survivre aux lésions causées par la BLM et la MMC. Les premiers travaux sur le sujet, ainsi que les premiers modèles présentés dans les livres d’éducation, attribuent une voie de réparation particulière, selon le type de lésion à l’ADN. La protéine RecN, induite par le régulons SOS, joue un rôle important dans la réparation de l’ADN et le traitement des lésions générées par ces deux antibiotiques. Cependant, la fonction de RecN dans ces deux processus n’est pas clairement comprise. RecN est une protéine qui joue un rôle dans la maintenance structurelle du chromosome (SMC). Elle se lie sur de l’ADN simple brin (ADNsb) (et qui peut attraper une seconde molécule d’ADN ?). In vitro, RecN stimule la ligation de molécules d’ADN. In vivo, RecN arrête la ségrégation des chromatides soeurs, et induit une compaction extrême du nucléoide. La sur-expression de RecN est toxique pour les cellules et son niveau est régulé par l’enzyme ClpXP, faisant partie du protéasome. RecN interagit avec RecA, toutes deux sont requises pour survivre aux DSB induites par l’endonucléase I-SCE 1. Elles sont généralement associées dans le même groupe épistatique. Des résultats récents suggèrent que RecA et RecN pourraient également avoir des voies d’actions distinctes, toutes deux importantes pour la réparation de l’ADN. Dans l’étude que l’on présente, nous avons utilisé à notre avantage, son implication dans le processus de réparation de deux types de lésions, pour questionner l’implication de RecN dans la réponse génomique au stress (GSR). Nous avons démontré que la dynamique des chromatides soeurs et que le changement de conformation du nucléoïde induit par RecN, est différent selon l’antibiotique utilisé. En présence de lésions induites par la MMC, RecN est requise en pre-traitement des lésions par « réparation par excision de nucléotide » (NER), et son activité sur les chromatides soeurs se manifeste tôt dans le processus de réparation. A l’inverse, en présence de lésions induites par la BLM, l’activité de RecN ne nécessite pas de traitement par le NER, et se manifeste plus tard, durant les phases de récupération. L’analyse par transposition insertion (TIS) a révélé que recN est un des rares gènes du SOS impliqué dans le GSR des deux antibiotiques. L’absence de RecN perturbe grandement le GSR, notamment par l’augmentation de la pression sur le système de réparation par excision de base (BER), tout en réduisant l’importance de la HR. L’analyse du TIS a également mis en évidence, l’implication extrême de multiples voies telles que : les pompes à efflux, la gestion du stress oxydatif, et le contrôle du cycle cellulaire, pour permettre une récupération de l’altération des dommages à l’ADN. L’activité de RecN est un point de bascule entre différentes solutions de réparation. Plus généralement, ce travail illustre que le GSR est un processus intégré que la cellule déploie pour générer les conditions de sa survie.
To preserve their niche, bacteria frequently produce and secrete antibiotics with genotoxic properties. Molecular processes that maintain genomic integrity are essential for all organisms. This is necessary because DNA damage can arise during every round of genome duplications. These antibiotics have been used for clinical application to treat infections or cancers. In the present work, we analyzed the Genomic Stress Response (GSR) induced by two genotoxic antibiotics: Bleomycin (BLM) and Mitomycin C (MMC). Although MMC and BLM alter DNA in different ways, they both lead to double strand breaks (DSB). The DSBs are suspected to be the major cause of cell death repaired by homologous recombination (HR). Earlier studies revealed that HR is essential to bacteria to survive BLM and MMC toxicity. Pioneer works and recent textbooks tend to attribute a particular DNA damage response (DDR) to each type of lesions. The RecN protein, induced by the SOS regulon, appeared to play important roles in the processing and repair of DNA lesions generated by MMC and BLM. However, the function of RecN in these two repair processes is not yet understood. RecN is a structural maintenance chromosome (SMC)-like protein that binds on single strand DNA where it can catch a second DNA molecule. In vitro, RecN stimulates the ligation of DNA molecules. In vivo, RecN prevents sister chromatid segregation and promotes an extreme nucleoid compaction. RecN overexpression is toxic for the cell and its level is regulated by ClpXP proteasome. Because RecN interacts with RecA and both are equally required to survive I-SCE 1 mediated DSB, they are generally associated in the same epistatic group. However, recent data suggest that RecA and RecN may also function in genetically distinct pathways, important for the DNA repair. In the present study, we took advantage of RecN involvement in the repair of two different types of DNA lesions to investigate the GSR. We demonstrated that sister chromatid dynamics and nucleoid management by RecN differ according to the drug considered. In presence of MMC-induced lesions, RecN requires a pre-processing of the lesions by the nucleotid excision repair (NER) and its activity on sister chromatids occurs early in the repair process. By contrast, in presence of BLM-induced lesions, RecN activity does not require NER processing and occurs later in the recovery phase. Transposition insertion (TIS) analysis revealed that recN is one of the rare DDR genes involved in the GSR of both drugs. A lack of RecN significantly disturbed the GSR, by increasing notably the pressure on the base excision repair (BER) pathway, while reducing concomitantly the importance of homologous recombination. The TIS analysis also highlighted how important drug tolerance pathways such as: efflux systems, oxidative stress management and cell cycle controllers, are for successful recovery from DNA alterations. Moreover, RecN activity influences the balance between different solutions. More generally, this work illustrates that GSR is an integrated process that cells adopt to create the most appropriate conditions for their survival.</description><subject>Blemoycin</subject><subject>Bléomycine</subject><subject>Cohésion des chromatides soeurs</subject><subject>Escherichia coli</subject><subject>Homologous recombination</subject><subject>Mitomycin-C</subject><subject>Mitomycine-C</subject><subject>Nucleotide excision repair</subject><subject>RecN</subject><subject>Recombinaison homologue</subject><subject>Réparation par excision de nucléotides</subject><subject>Sister chromatids cohesion</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2022</creationdate><recordtype>dissertation</recordtype><sourceid>RS3</sourceid><recordid>eNrjZOg83FlSmpKqcHhlQWZxSWJJZmFpqgKQH5Sa7KejkFoCZBcr5GSm5hUrpOaVFKUq5CQqJOdnHF5ZnJmfB5ZMzijKzwVqBLGLj04uLSqGaAOpLAIam1gElASrVch51DDT0cUPqCW1SsG1GEgVZSZnZIJMzMnkYWBNS8wpTuWF0twM8m6uIc4euolJqcXxJRmpxUDKyMDIKDQg2MfVwMjSmLAKAHGqTcc</recordid><startdate>20220624</startdate><enddate>20220624</enddate><creator>Camus, Adrien</creator><scope>AOWWY</scope><scope>RS3</scope><scope>~IT</scope></search><sort><creationdate>20220624</creationdate><title>Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli</title><author>Camus, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-abes_theses_2022UPSLE0293</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>fre</language><creationdate>2022</creationdate><topic>Blemoycin</topic><topic>Bléomycine</topic><topic>Cohésion des chromatides soeurs</topic><topic>Escherichia coli</topic><topic>Homologous recombination</topic><topic>Mitomycin-C</topic><topic>Mitomycine-C</topic><topic>Nucleotide excision repair</topic><topic>RecN</topic><topic>Recombinaison homologue</topic><topic>Réparation par excision de nucléotides</topic><topic>Sister chromatids cohesion</topic><toplevel>online_resources</toplevel><creatorcontrib>Camus, Adrien</creatorcontrib><collection>Theses.fr (Open Access)</collection><collection>Theses.fr</collection><collection>Thèses.fr</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Camus, Adrien</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><btitle>Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli</btitle><date>2022-06-24</date><risdate>2022</risdate><abstract>Afin de préserver leur niche de vie, les bactéries produisent et sécrètent des antibiotiques avec des propriétés génotoxiques. Divers processus moléculaires maintiennent l’intégrité génomique de tous les organismes vivants. Ces évènements sont primordiaux car la structure de l’ADN est endommagée en permanence par le métabolisme cellulaire (tel que le stress oxydatif ou lors de sa réplication), ou d’autres agents de l’environnement. Les antibiotiques sont utilisés pour des applications cliniques afin de traiter les infections ou le cancer. Dans le travail ici présenté, nous analysons la réponse au stress génomique (GSR) induit par deux antibiotiques génotoxiques : la Bléomycine (BLM) et la Mitomycine-C (MMC). Ces deux antibiotiques altèrent l’ADN de différentes manières tout en conduisant à des cassures doubles brins (DSB). Les DSB sont suspectées d’être la cause principale de la mort cellulaire. Les DSB sont réparées par recombinaison homologue (HR). Des études récentes ont révélé que la HR est essentielle pour survivre aux lésions causées par la BLM et la MMC. Les premiers travaux sur le sujet, ainsi que les premiers modèles présentés dans les livres d’éducation, attribuent une voie de réparation particulière, selon le type de lésion à l’ADN. La protéine RecN, induite par le régulons SOS, joue un rôle important dans la réparation de l’ADN et le traitement des lésions générées par ces deux antibiotiques. Cependant, la fonction de RecN dans ces deux processus n’est pas clairement comprise. RecN est une protéine qui joue un rôle dans la maintenance structurelle du chromosome (SMC). Elle se lie sur de l’ADN simple brin (ADNsb) (et qui peut attraper une seconde molécule d’ADN ?). In vitro, RecN stimule la ligation de molécules d’ADN. In vivo, RecN arrête la ségrégation des chromatides soeurs, et induit une compaction extrême du nucléoide. La sur-expression de RecN est toxique pour les cellules et son niveau est régulé par l’enzyme ClpXP, faisant partie du protéasome. RecN interagit avec RecA, toutes deux sont requises pour survivre aux DSB induites par l’endonucléase I-SCE 1. Elles sont généralement associées dans le même groupe épistatique. Des résultats récents suggèrent que RecA et RecN pourraient également avoir des voies d’actions distinctes, toutes deux importantes pour la réparation de l’ADN. Dans l’étude que l’on présente, nous avons utilisé à notre avantage, son implication dans le processus de réparation de deux types de lésions, pour questionner l’implication de RecN dans la réponse génomique au stress (GSR). Nous avons démontré que la dynamique des chromatides soeurs et que le changement de conformation du nucléoïde induit par RecN, est différent selon l’antibiotique utilisé. En présence de lésions induites par la MMC, RecN est requise en pre-traitement des lésions par « réparation par excision de nucléotide » (NER), et son activité sur les chromatides soeurs se manifeste tôt dans le processus de réparation. A l’inverse, en présence de lésions induites par la BLM, l’activité de RecN ne nécessite pas de traitement par le NER, et se manifeste plus tard, durant les phases de récupération. L’analyse par transposition insertion (TIS) a révélé que recN est un des rares gènes du SOS impliqué dans le GSR des deux antibiotiques. L’absence de RecN perturbe grandement le GSR, notamment par l’augmentation de la pression sur le système de réparation par excision de base (BER), tout en réduisant l’importance de la HR. L’analyse du TIS a également mis en évidence, l’implication extrême de multiples voies telles que : les pompes à efflux, la gestion du stress oxydatif, et le contrôle du cycle cellulaire, pour permettre une récupération de l’altération des dommages à l’ADN. L’activité de RecN est un point de bascule entre différentes solutions de réparation. Plus généralement, ce travail illustre que le GSR est un processus intégré que la cellule déploie pour générer les conditions de sa survie.
To preserve their niche, bacteria frequently produce and secrete antibiotics with genotoxic properties. Molecular processes that maintain genomic integrity are essential for all organisms. This is necessary because DNA damage can arise during every round of genome duplications. These antibiotics have been used for clinical application to treat infections or cancers. In the present work, we analyzed the Genomic Stress Response (GSR) induced by two genotoxic antibiotics: Bleomycin (BLM) and Mitomycin C (MMC). Although MMC and BLM alter DNA in different ways, they both lead to double strand breaks (DSB). The DSBs are suspected to be the major cause of cell death repaired by homologous recombination (HR). Earlier studies revealed that HR is essential to bacteria to survive BLM and MMC toxicity. Pioneer works and recent textbooks tend to attribute a particular DNA damage response (DDR) to each type of lesions. The RecN protein, induced by the SOS regulon, appeared to play important roles in the processing and repair of DNA lesions generated by MMC and BLM. However, the function of RecN in these two repair processes is not yet understood. RecN is a structural maintenance chromosome (SMC)-like protein that binds on single strand DNA where it can catch a second DNA molecule. In vitro, RecN stimulates the ligation of DNA molecules. In vivo, RecN prevents sister chromatid segregation and promotes an extreme nucleoid compaction. RecN overexpression is toxic for the cell and its level is regulated by ClpXP proteasome. Because RecN interacts with RecA and both are equally required to survive I-SCE 1 mediated DSB, they are generally associated in the same epistatic group. However, recent data suggest that RecA and RecN may also function in genetically distinct pathways, important for the DNA repair. In the present study, we took advantage of RecN involvement in the repair of two different types of DNA lesions to investigate the GSR. We demonstrated that sister chromatid dynamics and nucleoid management by RecN differ according to the drug considered. In presence of MMC-induced lesions, RecN requires a pre-processing of the lesions by the nucleotid excision repair (NER) and its activity on sister chromatids occurs early in the repair process. By contrast, in presence of BLM-induced lesions, RecN activity does not require NER processing and occurs later in the recovery phase. Transposition insertion (TIS) analysis revealed that recN is one of the rare DDR genes involved in the GSR of both drugs. A lack of RecN significantly disturbed the GSR, by increasing notably the pressure on the base excision repair (BER) pathway, while reducing concomitantly the importance of homologous recombination. The TIS analysis also highlighted how important drug tolerance pathways such as: efflux systems, oxidative stress management and cell cycle controllers, are for successful recovery from DNA alterations. Moreover, RecN activity influences the balance between different solutions. More generally, this work illustrates that GSR is an integrated process that cells adopt to create the most appropriate conditions for their survival.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | fre |
recordid | cdi_abes_theses_2022UPSLE029 |
source | Theses.fr |
subjects | Blemoycin Bléomycine Cohésion des chromatides soeurs Escherichia coli Homologous recombination Mitomycin-C Mitomycine-C Nucleotide excision repair RecN Recombinaison homologue Réparation par excision de nucléotides Sister chromatids cohesion |
title | Étude épistatique de RecN, et des liens entre la cohésion des chromatides sœurs et de la réparation de l’ADN chez Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-abes_RS3&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=%C3%89tude%20%C3%A9pistatique%20de%20RecN,%20et%20des%20liens%20entre%20la%20coh%C3%A9sion%20des%20chromatides%20s%C5%93urs%20et%20de%20la%20r%C3%A9paration%20de%20l%E2%80%99ADN%20chez%20Escherichia%20coli&rft.au=Camus,%20Adrien&rft.date=2022-06-24&rft_id=info:doi/&rft_dat=%3Cabes_RS3%3E2022UPSLE029%3C/abes_RS3%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |