Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance

Cette étude porte sur la caractérisation des mécanismes d'adhésion et d'endommagement de produits colaminés à froid, afin de pouvoir proposer des procédés optimisés. Celle-ci s’inscrit dans le cadre de la participation au projet MeGaN (pour Module Electronique GaN) qui porte le développeme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fekiri, Hiba
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fekiri, Hiba
description Cette étude porte sur la caractérisation des mécanismes d'adhésion et d'endommagement de produits colaminés à froid, afin de pouvoir proposer des procédés optimisés. Celle-ci s’inscrit dans le cadre de la participation au projet MeGaN (pour Module Electronique GaN) qui porte le développement de nouvelles technologies de modules de puissances à base de composants à grand gap « GaN », compatibles avec des applications hautes températures et hautes tensions. Notre travail porte essentiellement sur l’intégration d’un substrat innovant (i-TBC), un composite architecturé cuivre invar doté de ponts thermiques pour un bon compromis dialatation thermique/conductivité thermique pour accueillir les composants électroniques développés dans le cadre de ce projet. Ainsi, une première partie de ce travail est axée sur la caractérisation microstructurale du substrat i-TBC durant les étapes de son élaboration, l’objectif est de comprendre l’impact du procédé de colaminage sur la formation de l’adhésion des interfaces de cuivre dans les ponts thermiques. On a ainsi mis en évidence que la recristallisation de grains et la microstructure continue à travers l'interface Cu-Cu était garante d'une bonne adhérence de celle-ci. Dans la seconde partie, nous nous sommes focalisés sur la caractérisation de la tenue mécanique du substrat i-TBCdans des conditions de cycles thermiques passifs. Pour ce faire, des essais de fatigue thermique et de choc thermique nous permettent de déterminer la sensibilité de la tenue mécanique des interfaces à la fois à l’amplitude et à la vitesse de variation de température. La conclusion de cette étudeest que les paramètres de colaminage doivent permettent un compromis entreadhérence du pont Cu-Cu et des interfaces Cu-Invar pour augmenter significativement la durée de vie du composant. Enfin, nous avons procédé à l'analyse thermo-mécanique des propriétés intrinsèques du substrat seul et de l'assemblage électronique complet. Les propriétés intrinsèques ont été établies en termes de comportement mécanique du composite Cu-Invar et d'endommagement des interfaces sous la forme de propagation d'une fissure à l'interface Cu-Cu. This work is part of ‘MeGaN” project which focuses on the development of new power module technologies based on "GaN" wide gap components, compatible with high temperature and high voltages applications. In This study, a new substrate an innovative thermal bridge composite (i-TBC) has been developed, obtained by roll bonding of two copp
format Dissertation
fullrecord <record><control><sourceid>abes_RS3</sourceid><recordid>TN_cdi_abes_theses_2018PSLEM085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2018PSLEM085</sourcerecordid><originalsourceid>FETCH-LOGICAL-a805-fda6f96c132633a755b9693fa9c6284ff10cb1f9cae5353b4a554824dee856313</originalsourceid><addsrcrecordid>eNpVzD9OwzAUgPEsHarCGeoLRIrj2NhsqCp_pFQgtTt6dp5VS6Fp_WxmrsHGmnPkJpyEirIwfctP37ygDaRpjAEyg-j2IaFLOU4jm76YBULWIXM5vEdkxyFH1n9_fE5jf1ZxOIRT_gXHHIjg4JDdsm22lCIkuvi3ocs90j91Vcw89ITXf10Uu_v1bvVYts8PT6u7tgRdydJ3oLxRjotaCQE3UlqjjPBgnKp14z2vnOXeOEAppLANSNnouukQtVSCi0WxvGzBIr2mPdI5dcX1y7ZdbyotxQ8OSlQG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance</title><source>Theses.fr</source><creator>Fekiri, Hiba</creator><creatorcontrib>Fekiri, Hiba</creatorcontrib><description>Cette étude porte sur la caractérisation des mécanismes d'adhésion et d'endommagement de produits colaminés à froid, afin de pouvoir proposer des procédés optimisés. Celle-ci s’inscrit dans le cadre de la participation au projet MeGaN (pour Module Electronique GaN) qui porte le développement de nouvelles technologies de modules de puissances à base de composants à grand gap « GaN », compatibles avec des applications hautes températures et hautes tensions. Notre travail porte essentiellement sur l’intégration d’un substrat innovant (i-TBC), un composite architecturé cuivre invar doté de ponts thermiques pour un bon compromis dialatation thermique/conductivité thermique pour accueillir les composants électroniques développés dans le cadre de ce projet. Ainsi, une première partie de ce travail est axée sur la caractérisation microstructurale du substrat i-TBC durant les étapes de son élaboration, l’objectif est de comprendre l’impact du procédé de colaminage sur la formation de l’adhésion des interfaces de cuivre dans les ponts thermiques. On a ainsi mis en évidence que la recristallisation de grains et la microstructure continue à travers l'interface Cu-Cu était garante d'une bonne adhérence de celle-ci. Dans la seconde partie, nous nous sommes focalisés sur la caractérisation de la tenue mécanique du substrat i-TBCdans des conditions de cycles thermiques passifs. Pour ce faire, des essais de fatigue thermique et de choc thermique nous permettent de déterminer la sensibilité de la tenue mécanique des interfaces à la fois à l’amplitude et à la vitesse de variation de température. La conclusion de cette étudeest que les paramètres de colaminage doivent permettent un compromis entreadhérence du pont Cu-Cu et des interfaces Cu-Invar pour augmenter significativement la durée de vie du composant. Enfin, nous avons procédé à l'analyse thermo-mécanique des propriétés intrinsèques du substrat seul et de l'assemblage électronique complet. Les propriétés intrinsèques ont été établies en termes de comportement mécanique du composite Cu-Invar et d'endommagement des interfaces sous la forme de propagation d'une fissure à l'interface Cu-Cu. This work is part of ‘MeGaN” project which focuses on the development of new power module technologies based on "GaN" wide gap components, compatible with high temperature and high voltages applications. In This study, a new substrate an innovative thermal bridge composite (i-TBC) has been developed, obtained by roll bonding of two copper sheets separated by perforated invar. The i-TBC is an “architectured” composite material that combines good thermal conductivity associated to copper and limited CTE due to the presence of invar. A particularity of the i-TBC consists of the formation of copper bonding area through the invar perforations during the cold rolling called thermal bridges. These thermal bridges, ensure good thermal conductivity of the i-TBC. Thus, a first part of this work focuses on the microstructural characterization of the i-TBC substrate during the stages of its elaboration, the objective is to understand the impact of the elaboration steps on the adhesion formationof the copper interfaces. in thermal bridges. It was thus demonstrated that the cold welding obtained along the interface Cu-Cu was a guarantee of good adhesion. In the second part, we focused on the characterization of the mechanical strength of the i-TBC substrate under passive thermal cycling conditions. To do this, tests of thermal fatigue and thermal shock allow us todetermine the sensitivity of the mechanical resistance of the interfaces to both the amplitude and the speed of temperature variation. The conclusion of this study is that the parameters of cold rolling must allow a compromise between adhesion of the Cu-Cu bridge and Cu-Invar interfaces to significantly increase the lifetime of the substrate. Finally, a finite element analysis (FEA) wasperformed. firstly, the thermal modeling validated the thermal performance of the i-TBC substrate in an electronic assembly.Then, the intrinsic properties were established in terms of mechanical behavior of the Cu-Invar composite and deterioration of the interfaces in the form of propagation ofa crack at the Cu-Cu interface.</description><language>fre</language><subject>Caractérisation microstructurale ; Colaminage ; Cold rolling ; Cyclage thermique ; I-TBC substrate ; Microstructural characterization ; Substrat i-TBC ; Thermal and mechanical simulation ; Thermal cycling</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,311,780,885,26979</link.rule.ids><linktorsrc>$$Uhttps://www.theses.fr/2018PSLEM085/document$$EView_record_in_ABES$$FView_record_in_$$GABES$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fekiri, Hiba</creatorcontrib><title>Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance</title><description>Cette étude porte sur la caractérisation des mécanismes d'adhésion et d'endommagement de produits colaminés à froid, afin de pouvoir proposer des procédés optimisés. Celle-ci s’inscrit dans le cadre de la participation au projet MeGaN (pour Module Electronique GaN) qui porte le développement de nouvelles technologies de modules de puissances à base de composants à grand gap « GaN », compatibles avec des applications hautes températures et hautes tensions. Notre travail porte essentiellement sur l’intégration d’un substrat innovant (i-TBC), un composite architecturé cuivre invar doté de ponts thermiques pour un bon compromis dialatation thermique/conductivité thermique pour accueillir les composants électroniques développés dans le cadre de ce projet. Ainsi, une première partie de ce travail est axée sur la caractérisation microstructurale du substrat i-TBC durant les étapes de son élaboration, l’objectif est de comprendre l’impact du procédé de colaminage sur la formation de l’adhésion des interfaces de cuivre dans les ponts thermiques. On a ainsi mis en évidence que la recristallisation de grains et la microstructure continue à travers l'interface Cu-Cu était garante d'une bonne adhérence de celle-ci. Dans la seconde partie, nous nous sommes focalisés sur la caractérisation de la tenue mécanique du substrat i-TBCdans des conditions de cycles thermiques passifs. Pour ce faire, des essais de fatigue thermique et de choc thermique nous permettent de déterminer la sensibilité de la tenue mécanique des interfaces à la fois à l’amplitude et à la vitesse de variation de température. La conclusion de cette étudeest que les paramètres de colaminage doivent permettent un compromis entreadhérence du pont Cu-Cu et des interfaces Cu-Invar pour augmenter significativement la durée de vie du composant. Enfin, nous avons procédé à l'analyse thermo-mécanique des propriétés intrinsèques du substrat seul et de l'assemblage électronique complet. Les propriétés intrinsèques ont été établies en termes de comportement mécanique du composite Cu-Invar et d'endommagement des interfaces sous la forme de propagation d'une fissure à l'interface Cu-Cu. This work is part of ‘MeGaN” project which focuses on the development of new power module technologies based on "GaN" wide gap components, compatible with high temperature and high voltages applications. In This study, a new substrate an innovative thermal bridge composite (i-TBC) has been developed, obtained by roll bonding of two copper sheets separated by perforated invar. The i-TBC is an “architectured” composite material that combines good thermal conductivity associated to copper and limited CTE due to the presence of invar. A particularity of the i-TBC consists of the formation of copper bonding area through the invar perforations during the cold rolling called thermal bridges. These thermal bridges, ensure good thermal conductivity of the i-TBC. Thus, a first part of this work focuses on the microstructural characterization of the i-TBC substrate during the stages of its elaboration, the objective is to understand the impact of the elaboration steps on the adhesion formationof the copper interfaces. in thermal bridges. It was thus demonstrated that the cold welding obtained along the interface Cu-Cu was a guarantee of good adhesion. In the second part, we focused on the characterization of the mechanical strength of the i-TBC substrate under passive thermal cycling conditions. To do this, tests of thermal fatigue and thermal shock allow us todetermine the sensitivity of the mechanical resistance of the interfaces to both the amplitude and the speed of temperature variation. The conclusion of this study is that the parameters of cold rolling must allow a compromise between adhesion of the Cu-Cu bridge and Cu-Invar interfaces to significantly increase the lifetime of the substrate. Finally, a finite element analysis (FEA) wasperformed. firstly, the thermal modeling validated the thermal performance of the i-TBC substrate in an electronic assembly.Then, the intrinsic properties were established in terms of mechanical behavior of the Cu-Invar composite and deterioration of the interfaces in the form of propagation ofa crack at the Cu-Cu interface.</description><subject>Caractérisation microstructurale</subject><subject>Colaminage</subject><subject>Cold rolling</subject><subject>Cyclage thermique</subject><subject>I-TBC substrate</subject><subject>Microstructural characterization</subject><subject>Substrat i-TBC</subject><subject>Thermal and mechanical simulation</subject><subject>Thermal cycling</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2018</creationdate><recordtype>dissertation</recordtype><sourceid>RS3</sourceid><recordid>eNpVzD9OwzAUgPEsHarCGeoLRIrj2NhsqCp_pFQgtTt6dp5VS6Fp_WxmrsHGmnPkJpyEirIwfctP37ygDaRpjAEyg-j2IaFLOU4jm76YBULWIXM5vEdkxyFH1n9_fE5jf1ZxOIRT_gXHHIjg4JDdsm22lCIkuvi3ocs90j91Vcw89ITXf10Uu_v1bvVYts8PT6u7tgRdydJ3oLxRjotaCQE3UlqjjPBgnKp14z2vnOXeOEAppLANSNnouukQtVSCi0WxvGzBIr2mPdI5dcX1y7ZdbyotxQ8OSlQG</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>Fekiri, Hiba</creator><scope>AOWWY</scope><scope>RS3</scope><scope>~IT</scope></search><sort><creationdate>20181210</creationdate><title>Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance</title><author>Fekiri, Hiba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a805-fda6f96c132633a755b9693fa9c6284ff10cb1f9cae5353b4a554824dee856313</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>fre</language><creationdate>2018</creationdate><topic>Caractérisation microstructurale</topic><topic>Colaminage</topic><topic>Cold rolling</topic><topic>Cyclage thermique</topic><topic>I-TBC substrate</topic><topic>Microstructural characterization</topic><topic>Substrat i-TBC</topic><topic>Thermal and mechanical simulation</topic><topic>Thermal cycling</topic><toplevel>online_resources</toplevel><creatorcontrib>Fekiri, Hiba</creatorcontrib><collection>Theses.fr (Open Access)</collection><collection>Theses.fr</collection><collection>Thèses.fr</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fekiri, Hiba</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><btitle>Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance</btitle><date>2018-12-10</date><risdate>2018</risdate><abstract>Cette étude porte sur la caractérisation des mécanismes d'adhésion et d'endommagement de produits colaminés à froid, afin de pouvoir proposer des procédés optimisés. Celle-ci s’inscrit dans le cadre de la participation au projet MeGaN (pour Module Electronique GaN) qui porte le développement de nouvelles technologies de modules de puissances à base de composants à grand gap « GaN », compatibles avec des applications hautes températures et hautes tensions. Notre travail porte essentiellement sur l’intégration d’un substrat innovant (i-TBC), un composite architecturé cuivre invar doté de ponts thermiques pour un bon compromis dialatation thermique/conductivité thermique pour accueillir les composants électroniques développés dans le cadre de ce projet. Ainsi, une première partie de ce travail est axée sur la caractérisation microstructurale du substrat i-TBC durant les étapes de son élaboration, l’objectif est de comprendre l’impact du procédé de colaminage sur la formation de l’adhésion des interfaces de cuivre dans les ponts thermiques. On a ainsi mis en évidence que la recristallisation de grains et la microstructure continue à travers l'interface Cu-Cu était garante d'une bonne adhérence de celle-ci. Dans la seconde partie, nous nous sommes focalisés sur la caractérisation de la tenue mécanique du substrat i-TBCdans des conditions de cycles thermiques passifs. Pour ce faire, des essais de fatigue thermique et de choc thermique nous permettent de déterminer la sensibilité de la tenue mécanique des interfaces à la fois à l’amplitude et à la vitesse de variation de température. La conclusion de cette étudeest que les paramètres de colaminage doivent permettent un compromis entreadhérence du pont Cu-Cu et des interfaces Cu-Invar pour augmenter significativement la durée de vie du composant. Enfin, nous avons procédé à l'analyse thermo-mécanique des propriétés intrinsèques du substrat seul et de l'assemblage électronique complet. Les propriétés intrinsèques ont été établies en termes de comportement mécanique du composite Cu-Invar et d'endommagement des interfaces sous la forme de propagation d'une fissure à l'interface Cu-Cu. This work is part of ‘MeGaN” project which focuses on the development of new power module technologies based on "GaN" wide gap components, compatible with high temperature and high voltages applications. In This study, a new substrate an innovative thermal bridge composite (i-TBC) has been developed, obtained by roll bonding of two copper sheets separated by perforated invar. The i-TBC is an “architectured” composite material that combines good thermal conductivity associated to copper and limited CTE due to the presence of invar. A particularity of the i-TBC consists of the formation of copper bonding area through the invar perforations during the cold rolling called thermal bridges. These thermal bridges, ensure good thermal conductivity of the i-TBC. Thus, a first part of this work focuses on the microstructural characterization of the i-TBC substrate during the stages of its elaboration, the objective is to understand the impact of the elaboration steps on the adhesion formationof the copper interfaces. in thermal bridges. It was thus demonstrated that the cold welding obtained along the interface Cu-Cu was a guarantee of good adhesion. In the second part, we focused on the characterization of the mechanical strength of the i-TBC substrate under passive thermal cycling conditions. To do this, tests of thermal fatigue and thermal shock allow us todetermine the sensitivity of the mechanical resistance of the interfaces to both the amplitude and the speed of temperature variation. The conclusion of this study is that the parameters of cold rolling must allow a compromise between adhesion of the Cu-Cu bridge and Cu-Invar interfaces to significantly increase the lifetime of the substrate. Finally, a finite element analysis (FEA) wasperformed. firstly, the thermal modeling validated the thermal performance of the i-TBC substrate in an electronic assembly.Then, the intrinsic properties were established in terms of mechanical behavior of the Cu-Invar composite and deterioration of the interfaces in the form of propagation ofa crack at the Cu-Cu interface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language fre
recordid cdi_abes_theses_2018PSLEM085
source Theses.fr
subjects Caractérisation microstructurale
Colaminage
Cold rolling
Cyclage thermique
I-TBC substrate
Microstructural characterization
Substrat i-TBC
Thermal and mechanical simulation
Thermal cycling
title Matériau architecturé à base de cuivre pour l’électronique de puissance : Substrats pour modules de puissance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-abes_RS3&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=Mat%C3%A9riau%20architectur%C3%A9%20%C3%A0%20base%20de%20cuivre%20pour%20l%E2%80%99%C3%A9lectronique%20de%20puissance%20:%20Substrats%20pour%20modules%20de%20puissance&rft.au=Fekiri,%20Hiba&rft.date=2018-12-10&rft_id=info:doi/&rft_dat=%3Cabes_RS3%3E2018PSLEM085%3C/abes_RS3%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true