Quantification des incertitudes et analyse de sensibilité pour codes de calcul à entrées fonctionnelles et dépendantes

Cette thèse s'inscrit dans le cadre du traitement des incertitudes dans les simulateurs numériques, et porte plus particulièrement sur l'étude de deux cas d'application liés aux études de sûreté pour les réacteurs nucléaires. Ces deux applications présentent plusieurs caractéristiques...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nanty, Simon
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cette thèse s'inscrit dans le cadre du traitement des incertitudes dans les simulateurs numériques, et porte plus particulièrement sur l'étude de deux cas d'application liés aux études de sûreté pour les réacteurs nucléaires. Ces deux applications présentent plusieurs caractéristiques communes. La première est que les entrées du code étudié sont fonctionnelles et scalaires, les entrées fonctionnelles étant dépendantes entre elles. La deuxième caractéristique est que la distribution de probabilité des entrées fonctionnelles n'est connue qu'à travers un échantillon de ces variables. La troisième caractéristique, présente uniquement dans un des deux cas d'étude, est le coût de calcul élevé du code étudié qui limite le nombre de simulations possibles. L'objectif principal de ces travaux de thèse était de proposer une méthodologie complète de traitement des incertitudes de simulateurs numériques pour les deux cas étudiés. Dans un premier temps, nous avons proposé une méthodologie pour quantifier les incertitudes de variables aléatoires fonctionnelles dépendantes à partir d'un échantillon de leurs réalisations. Cette méthodologie permet à la fois de modéliser la dépendance entre les variables fonctionnelles et de prendre en compte le lien entre ces variables et une autre variable, appelée covariable, qui peut être, par exemple, la sortie du code étudié. Associée à cette méthodologie, nous avons développé une adaptation d'un outil de visualisation de données fonctionnelles, permettant de visualiser simultanément les incertitudes et les caractéristiques de plusieurs variables fonctionnelles dépendantes. Dans un second temps, une méthodologie pour réaliser l'analyse de sensibilité globale des simulateurs des deux cas d'étude a été proposée. Dans le cas d'un code coûteux en temps de calcul, l'application directe des méthodes d'analyse de sensibilité globale quantitative est impossible. Pour pallier ce problème, la solution retenue consiste à construire un modèle de substitution ou métamodèle, approchant le code de calcul et ayant un temps de calcul très court. Une méthode d'échantillonnage uniforme optimisé pour des variables scalaires et fonctionnelles a été développée pour construire la base d'apprentissage du métamodèle. Enfin, une nouvelle approche d'approximation de codes coûteux et à entrées fonctionnelles a été explorée. Dans cette approche, le code est vu comme un code stochastique dont l'aléa est dû aux variables fonctionnelles supposées incontrôlables. Sou