Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression

Avec l'augmentation du nombre de dispositifs utilisant des nanostructures, tels les nanofils pour les systèmes photovoltaïques, les détecteurs, etc., il devient nécessaire de développer des techniques de fabrication de réseau d'objets de dimensions nanométrique à faible coût. Dans cette ét...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gorisse, Thérèse
Format: Dissertation
Sprache:fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gorisse, Thérèse
description Avec l'augmentation du nombre de dispositifs utilisant des nanostructures, tels les nanofils pour les systèmes photovoltaïques, les détecteurs, etc., il devient nécessaire de développer des techniques de fabrication de réseau d'objets de dimensions nanométrique à faible coût. Dans cette étude, nous utilisons les propriétés d'auto-assemblage combinées avec des méthodes « descendantes » pour créer des réseaux de nanostructures très denses et très organisés. En effet, nous proposons de produire des réseaux hexagonaux parfaits d'alumine poreuse (AAO) et de les utiliser pour la croissance confinée de fils de silicium (Si) par la technique de dépôt chimique en phase vapeur (CVD).L'AAO est naturellement obtenue par oxydation de l'aluminium dans un acide, mais ce processus seul n'apporte qu'une organisation des pores très faible. Nous présentons un procédé innovant utilisant la lithographie par nano-impression thermique pour pré-texturer l'aluminium avant son anodisation. Ainsi, nous obtenons des réseaux poreux hexagonaux parfait sur des surfaces allant jusqu'à 4 cm ². Toutes les caractéristiques géométriques de la membrane poreuse peuvent être ajustées en faisant varier les paramètres expérimentaux de l'anodisation. En outre, pour augmenter la densité du réseau et réduire le coût de fabrication du moule d'impression, nous avons développé des structures originales avec une croissance mixte de pores guidées et générer naturellement.Afin d'étudier les caractéristiques de ces réseaux et suivre leur évolution au cours de leur formation, nous présentons les résultats d'une étude de diffusion des rayons X aux petits angles réalisée in situ pendant la formation de l'AAO.L'AAO est finalement utilisée comme matrice guide pour la croissance auto-organisée de fils de Si par CVD. Nous présentons donc des réseaux hexagonaux parfaits de nanofils crus perpendiculairement à la direction des substrats de silicium. Les différentes étapes du procédé, du dépôt de catalyseur à la croissance des fils sont présentées. Grâce à cette technique, nous obtenons des densités de fils allant jusqu'à 9.109 cm-2 et la dispersion des diamètres est meilleure que lors d'une croissance colloïdale (CVD). La composition chimique et l'orientation cristalline des nanofils confirme qu'ils sont en silicium et que nous avons à la fois des orientations et . Nous avons étudié également la conductivité entre le sommet des fils et le substrat grâce à la technique du microscope à force atomique conducteur. With
format Dissertation
fullrecord <record><control><sourceid>abes_RS3</sourceid><recordid>TN_cdi_abes_theses_2014GRENY021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014GRENY021</sourcerecordid><originalsourceid>FETCH-LOGICAL-a801-a40538ded31c3a6c96f1e7b0928c0eba14301353a636f37dbed7222c88b313e43</originalsourceid><addsrcrecordid>eNotjEFOwzAURLNhgQpnwDtWkWz_NEmXVVUKUgUS6qYr9G3_FEuOE-yYO-UcuRiGsnqjmae5Lb63aRpKjJF65fBC7LLMfpmD_UrEDDGPfuisi785Wme1TT0z6CNLnliPU7A6i4_oUm_91R-HQCkSy682TsvMRgx_g-3HQLkc_F1x06GLdP_PVXF62p92z-Xx7fCy2x5LbLkoseJraA0ZEBqw1pu6E9QovpGt5qRQVMAFrPMEdQeNUWQaKaVuWwUCqIJV8XC9RUXxY_qkmCG5qA7v-9czlwJ-AAeaU_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression</title><source>Theses.fr</source><creator>Gorisse, Thérèse</creator><creatorcontrib>Gorisse, Thérèse</creatorcontrib><description>Avec l'augmentation du nombre de dispositifs utilisant des nanostructures, tels les nanofils pour les systèmes photovoltaïques, les détecteurs, etc., il devient nécessaire de développer des techniques de fabrication de réseau d'objets de dimensions nanométrique à faible coût. Dans cette étude, nous utilisons les propriétés d'auto-assemblage combinées avec des méthodes « descendantes » pour créer des réseaux de nanostructures très denses et très organisés. En effet, nous proposons de produire des réseaux hexagonaux parfaits d'alumine poreuse (AAO) et de les utiliser pour la croissance confinée de fils de silicium (Si) par la technique de dépôt chimique en phase vapeur (CVD).L'AAO est naturellement obtenue par oxydation de l'aluminium dans un acide, mais ce processus seul n'apporte qu'une organisation des pores très faible. Nous présentons un procédé innovant utilisant la lithographie par nano-impression thermique pour pré-texturer l'aluminium avant son anodisation. Ainsi, nous obtenons des réseaux poreux hexagonaux parfait sur des surfaces allant jusqu'à 4 cm ². Toutes les caractéristiques géométriques de la membrane poreuse peuvent être ajustées en faisant varier les paramètres expérimentaux de l'anodisation. En outre, pour augmenter la densité du réseau et réduire le coût de fabrication du moule d'impression, nous avons développé des structures originales avec une croissance mixte de pores guidées et générer naturellement.Afin d'étudier les caractéristiques de ces réseaux et suivre leur évolution au cours de leur formation, nous présentons les résultats d'une étude de diffusion des rayons X aux petits angles réalisée in situ pendant la formation de l'AAO.L'AAO est finalement utilisée comme matrice guide pour la croissance auto-organisée de fils de Si par CVD. Nous présentons donc des réseaux hexagonaux parfaits de nanofils crus perpendiculairement à la direction des substrats de silicium. Les différentes étapes du procédé, du dépôt de catalyseur à la croissance des fils sont présentées. Grâce à cette technique, nous obtenons des densités de fils allant jusqu'à 9.109 cm-2 et la dispersion des diamètres est meilleure que lors d'une croissance colloïdale (CVD). La composition chimique et l'orientation cristalline des nanofils confirme qu'ils sont en silicium et que nous avons à la fois des orientations et . Nous avons étudié également la conductivité entre le sommet des fils et le substrat grâce à la technique du microscope à force atomique conducteur. With the increased number of devices using functional nanostructures, e.g nanowires for photovoltaic systems, detector etc, it becomes of great importance to develop low-cost and versatile fabrication of systems with nano-objects. In this study, self-assembly properties combined with top-down methods were used to create highly dense and organized nanostructures. Indeed, flawless hexagonal porous anodic alumina arrays (PAA) were successfully used as a template for the epitaxial Silicon (Si) nanowires (NW) growth in a chemical vapor deposition reactor (CVD).PAA is naturally obtained by oxidation of aluminum in acid; however this simple process brings a poor pores organization. We present an innovative route using Thermal NanoImprint Lithography previous to aluminum anodization to prepare perfect hexagonal nanopore array on large surface (4 cm²). All the geometrical characteristics of the porous membrane can be adjusted by varying experimental parameters. Furthermore, to increase the density of the array and reduce the fabrication cost of the imprint mould, original structures with a mixed growth of NIL-guided pores and generation of naturally-guided pores (induced pores) have been developed. Shapes of the pores can be modified varying the electrolyte.To know the characteristic of these arrays and their evolution during formation, we will present the results of the hitherto unseen In Situ study under Grazing Incidence Small Angle X-ray Scattering of PAA formation.The PAA is finally used as templates for the self-organized Si NW growth in a CVD reactor. Hexagonal nanowire arrays grown perpendicularly to silicon substrates were successfully produced. The different process steps from the catalyst deposition to the planarization of the array are presented. The quality of the final silicon array is discussed. Densities up to 9*109 NW.cm-2 and diameter dispersion better than colloidal growth are achieved. The chemical composition and the crystalline orientation of the nanowires confirms the nanowires are in silicon and a mix between and orientation. We also measured the conductivity between the top of the vertical nanowire and the substrate with conductive atomic force microscopy.</description><language>fre</language><subject>Alumine nanoporeuse ; Electrochemistry ; Electrochimie ; Nanofils de Silicium ; Nanoimpression ; Nanoimprint ; Nanoporous alumina ; Silicon nanowire</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,311,780,885,26981</link.rule.ids><linktorsrc>$$Uhttps://www.theses.fr/2014GRENY021/document$$EView_record_in_ABES$$FView_record_in_$$GABES$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gorisse, Thérèse</creatorcontrib><title>Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression</title><description>Avec l'augmentation du nombre de dispositifs utilisant des nanostructures, tels les nanofils pour les systèmes photovoltaïques, les détecteurs, etc., il devient nécessaire de développer des techniques de fabrication de réseau d'objets de dimensions nanométrique à faible coût. Dans cette étude, nous utilisons les propriétés d'auto-assemblage combinées avec des méthodes « descendantes » pour créer des réseaux de nanostructures très denses et très organisés. En effet, nous proposons de produire des réseaux hexagonaux parfaits d'alumine poreuse (AAO) et de les utiliser pour la croissance confinée de fils de silicium (Si) par la technique de dépôt chimique en phase vapeur (CVD).L'AAO est naturellement obtenue par oxydation de l'aluminium dans un acide, mais ce processus seul n'apporte qu'une organisation des pores très faible. Nous présentons un procédé innovant utilisant la lithographie par nano-impression thermique pour pré-texturer l'aluminium avant son anodisation. Ainsi, nous obtenons des réseaux poreux hexagonaux parfait sur des surfaces allant jusqu'à 4 cm ². Toutes les caractéristiques géométriques de la membrane poreuse peuvent être ajustées en faisant varier les paramètres expérimentaux de l'anodisation. En outre, pour augmenter la densité du réseau et réduire le coût de fabrication du moule d'impression, nous avons développé des structures originales avec une croissance mixte de pores guidées et générer naturellement.Afin d'étudier les caractéristiques de ces réseaux et suivre leur évolution au cours de leur formation, nous présentons les résultats d'une étude de diffusion des rayons X aux petits angles réalisée in situ pendant la formation de l'AAO.L'AAO est finalement utilisée comme matrice guide pour la croissance auto-organisée de fils de Si par CVD. Nous présentons donc des réseaux hexagonaux parfaits de nanofils crus perpendiculairement à la direction des substrats de silicium. Les différentes étapes du procédé, du dépôt de catalyseur à la croissance des fils sont présentées. Grâce à cette technique, nous obtenons des densités de fils allant jusqu'à 9.109 cm-2 et la dispersion des diamètres est meilleure que lors d'une croissance colloïdale (CVD). La composition chimique et l'orientation cristalline des nanofils confirme qu'ils sont en silicium et que nous avons à la fois des orientations et . Nous avons étudié également la conductivité entre le sommet des fils et le substrat grâce à la technique du microscope à force atomique conducteur. With the increased number of devices using functional nanostructures, e.g nanowires for photovoltaic systems, detector etc, it becomes of great importance to develop low-cost and versatile fabrication of systems with nano-objects. In this study, self-assembly properties combined with top-down methods were used to create highly dense and organized nanostructures. Indeed, flawless hexagonal porous anodic alumina arrays (PAA) were successfully used as a template for the epitaxial Silicon (Si) nanowires (NW) growth in a chemical vapor deposition reactor (CVD).PAA is naturally obtained by oxidation of aluminum in acid; however this simple process brings a poor pores organization. We present an innovative route using Thermal NanoImprint Lithography previous to aluminum anodization to prepare perfect hexagonal nanopore array on large surface (4 cm²). All the geometrical characteristics of the porous membrane can be adjusted by varying experimental parameters. Furthermore, to increase the density of the array and reduce the fabrication cost of the imprint mould, original structures with a mixed growth of NIL-guided pores and generation of naturally-guided pores (induced pores) have been developed. Shapes of the pores can be modified varying the electrolyte.To know the characteristic of these arrays and their evolution during formation, we will present the results of the hitherto unseen In Situ study under Grazing Incidence Small Angle X-ray Scattering of PAA formation.The PAA is finally used as templates for the self-organized Si NW growth in a CVD reactor. Hexagonal nanowire arrays grown perpendicularly to silicon substrates were successfully produced. The different process steps from the catalyst deposition to the planarization of the array are presented. The quality of the final silicon array is discussed. Densities up to 9*109 NW.cm-2 and diameter dispersion better than colloidal growth are achieved. The chemical composition and the crystalline orientation of the nanowires confirms the nanowires are in silicon and a mix between and orientation. We also measured the conductivity between the top of the vertical nanowire and the substrate with conductive atomic force microscopy.</description><subject>Alumine nanoporeuse</subject><subject>Electrochemistry</subject><subject>Electrochimie</subject><subject>Nanofils de Silicium</subject><subject>Nanoimpression</subject><subject>Nanoimprint</subject><subject>Nanoporous alumina</subject><subject>Silicon nanowire</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2014</creationdate><recordtype>dissertation</recordtype><sourceid>RS3</sourceid><recordid>eNotjEFOwzAURLNhgQpnwDtWkWz_NEmXVVUKUgUS6qYr9G3_FEuOE-yYO-UcuRiGsnqjmae5Lb63aRpKjJF65fBC7LLMfpmD_UrEDDGPfuisi785Wme1TT0z6CNLnliPU7A6i4_oUm_91R-HQCkSy682TsvMRgx_g-3HQLkc_F1x06GLdP_PVXF62p92z-Xx7fCy2x5LbLkoseJraA0ZEBqw1pu6E9QovpGt5qRQVMAFrPMEdQeNUWQaKaVuWwUCqIJV8XC9RUXxY_qkmCG5qA7v-9czlwJ-AAeaU_E</recordid><startdate>20140328</startdate><enddate>20140328</enddate><creator>Gorisse, Thérèse</creator><scope>AOWWY</scope><scope>RS3</scope><scope>~IT</scope></search><sort><creationdate>20140328</creationdate><title>Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression</title><author>Gorisse, Thérèse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a801-a40538ded31c3a6c96f1e7b0928c0eba14301353a636f37dbed7222c88b313e43</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>fre</language><creationdate>2014</creationdate><topic>Alumine nanoporeuse</topic><topic>Electrochemistry</topic><topic>Electrochimie</topic><topic>Nanofils de Silicium</topic><topic>Nanoimpression</topic><topic>Nanoimprint</topic><topic>Nanoporous alumina</topic><topic>Silicon nanowire</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorisse, Thérèse</creatorcontrib><collection>Theses.fr (Open Access)</collection><collection>Theses.fr</collection><collection>Thèses.fr</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorisse, Thérèse</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><btitle>Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression</btitle><date>2014-03-28</date><risdate>2014</risdate><abstract>Avec l'augmentation du nombre de dispositifs utilisant des nanostructures, tels les nanofils pour les systèmes photovoltaïques, les détecteurs, etc., il devient nécessaire de développer des techniques de fabrication de réseau d'objets de dimensions nanométrique à faible coût. Dans cette étude, nous utilisons les propriétés d'auto-assemblage combinées avec des méthodes « descendantes » pour créer des réseaux de nanostructures très denses et très organisés. En effet, nous proposons de produire des réseaux hexagonaux parfaits d'alumine poreuse (AAO) et de les utiliser pour la croissance confinée de fils de silicium (Si) par la technique de dépôt chimique en phase vapeur (CVD).L'AAO est naturellement obtenue par oxydation de l'aluminium dans un acide, mais ce processus seul n'apporte qu'une organisation des pores très faible. Nous présentons un procédé innovant utilisant la lithographie par nano-impression thermique pour pré-texturer l'aluminium avant son anodisation. Ainsi, nous obtenons des réseaux poreux hexagonaux parfait sur des surfaces allant jusqu'à 4 cm ². Toutes les caractéristiques géométriques de la membrane poreuse peuvent être ajustées en faisant varier les paramètres expérimentaux de l'anodisation. En outre, pour augmenter la densité du réseau et réduire le coût de fabrication du moule d'impression, nous avons développé des structures originales avec une croissance mixte de pores guidées et générer naturellement.Afin d'étudier les caractéristiques de ces réseaux et suivre leur évolution au cours de leur formation, nous présentons les résultats d'une étude de diffusion des rayons X aux petits angles réalisée in situ pendant la formation de l'AAO.L'AAO est finalement utilisée comme matrice guide pour la croissance auto-organisée de fils de Si par CVD. Nous présentons donc des réseaux hexagonaux parfaits de nanofils crus perpendiculairement à la direction des substrats de silicium. Les différentes étapes du procédé, du dépôt de catalyseur à la croissance des fils sont présentées. Grâce à cette technique, nous obtenons des densités de fils allant jusqu'à 9.109 cm-2 et la dispersion des diamètres est meilleure que lors d'une croissance colloïdale (CVD). La composition chimique et l'orientation cristalline des nanofils confirme qu'ils sont en silicium et que nous avons à la fois des orientations et . Nous avons étudié également la conductivité entre le sommet des fils et le substrat grâce à la technique du microscope à force atomique conducteur. With the increased number of devices using functional nanostructures, e.g nanowires for photovoltaic systems, detector etc, it becomes of great importance to develop low-cost and versatile fabrication of systems with nano-objects. In this study, self-assembly properties combined with top-down methods were used to create highly dense and organized nanostructures. Indeed, flawless hexagonal porous anodic alumina arrays (PAA) were successfully used as a template for the epitaxial Silicon (Si) nanowires (NW) growth in a chemical vapor deposition reactor (CVD).PAA is naturally obtained by oxidation of aluminum in acid; however this simple process brings a poor pores organization. We present an innovative route using Thermal NanoImprint Lithography previous to aluminum anodization to prepare perfect hexagonal nanopore array on large surface (4 cm²). All the geometrical characteristics of the porous membrane can be adjusted by varying experimental parameters. Furthermore, to increase the density of the array and reduce the fabrication cost of the imprint mould, original structures with a mixed growth of NIL-guided pores and generation of naturally-guided pores (induced pores) have been developed. Shapes of the pores can be modified varying the electrolyte.To know the characteristic of these arrays and their evolution during formation, we will present the results of the hitherto unseen In Situ study under Grazing Incidence Small Angle X-ray Scattering of PAA formation.The PAA is finally used as templates for the self-organized Si NW growth in a CVD reactor. Hexagonal nanowire arrays grown perpendicularly to silicon substrates were successfully produced. The different process steps from the catalyst deposition to the planarization of the array are presented. The quality of the final silicon array is discussed. Densities up to 9*109 NW.cm-2 and diameter dispersion better than colloidal growth are achieved. The chemical composition and the crystalline orientation of the nanowires confirms the nanowires are in silicon and a mix between and orientation. We also measured the conductivity between the top of the vertical nanowire and the substrate with conductive atomic force microscopy.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language fre
recordid cdi_abes_theses_2014GRENY021
source Theses.fr
subjects Alumine nanoporeuse
Electrochemistry
Electrochimie
Nanofils de Silicium
Nanoimpression
Nanoimprint
Nanoporous alumina
Silicon nanowire
title Auto-assemblage générique de nanofils de silicium dans une matrice d'alumine nanoporeuse assisté par nanoimpression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-abes_RS3&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=Auto-assemblage%20g%C3%A9n%C3%A9rique%20de%20nanofils%20de%20silicium%20dans%20une%20matrice%20d'alumine%20nanoporeuse%20assist%C3%A9%20par%20nanoimpression&rft.au=Gorisse,%20The%CC%81re%CC%80se&rft.date=2014-03-28&rft_id=info:doi/&rft_dat=%3Cabes_RS3%3E2014GRENY021%3C/abes_RS3%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true