Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems

La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Pastorelli, Mario
Format: Dissertation
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pastorelli, Mario
description La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers pour les systèmes de DISC sont axées sur l’équité, sans optimiser les temps de réponse. Les meilleures pratiques pour surmonter ce problème comprennent une intervention manuelle et une politique de planification ad-hoc , qui est sujette aux erreurs et qui est difficile à adapter aux changements. Dans cette thèse, nous nous concentrons sur la planification basée sur la taille pour les systèmes DISC. La principale contribution de ce travail est le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur préemptif basé sur la taille qui tient en considération le vieillissement, ayant comme objectifs de fournir l’équité et des temps de réponse réduits. Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne sont pas connus a priori, donc, HFSP comprends un module d’estimation de taille, qui calcule une approximation et qui affine cette estimation au fur et a mesure du progrès d’un job. Nous démontrons que l’impact des erreurs d’estimation sur les politiques fondées sur la taille n’est pas significatif. Pour cette raison, et en vertu d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats expérimentaux démontrent que, dans un véritable déploiement Hadoop avec des charges de travail réalistes, HFSP est plus performant que les politiques de scheduling existantes, a la fois en terme de temps de réponse et d’équité. En outre, HFSP maintiens ses bonnes performances même lorsque le cluster de calcul est lourdement chargé, car il focalises les ressources sur des jobs ayant priorité. HFSP est une politique préventive: la préemption dans un système DISC peut être mis en œuvre avec des techniques différentes. Les approches actuellement disponibles dans Hadoop ont des lacunes qui ont une incidence sur les performances du système. Par conséquence, nous avons mis en œuvre une nouvelle technique de préemption, appelé suspension, qui exploite le système d’exploitation pour effectuer la préemption d’une manière qui garantie une faible latence sans pénaliser l’avancement des jobs a faible priorité. The past decade have seen the rise of data-intensive scalable co
format Dissertation
fullrecord <record><control><sourceid>abes_RS3</sourceid><recordid>TN_cdi_abes_theses_2014ENST0048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014ENST0048</sourcerecordid><originalsourceid>FETCH-LOGICAL-a808-299589b0a478bca01f9de3b26713b719e215d8b67ff2435adbd2da8d2a74b3183</originalsourceid><addsrcrecordid>eNotjElOAzEURHuTBQqcAV-gJU8d20sUwiBFsKD30f8ewMhxt_KdBUfiHFyMRmFTTyW9qquu3mfyeS65RmII9PO9kM4nVoA1yKVENk-XOheoOWUPLU-VhcX7nJBYgPoXDfpcW6yUEyMPBXCZ-uk4n1uu74y-qMUjXXerBIXizT_X3fiwG7dP_f718Xl7t-_BcttL5wbrkIM2Fj1wkVyICuXGCIVGuCjFECxuTEpSqwECBhnABglGoxJWrbvbyy1gpEP7iLRAcqF3L28j59qqX81bT38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>dissertation</recordtype></control><display><type>dissertation</type><title>Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems</title><source>Theses.fr</source><creator>Pastorelli, Mario</creator><creatorcontrib>Pastorelli, Mario</creatorcontrib><description>La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers pour les systèmes de DISC sont axées sur l’équité, sans optimiser les temps de réponse. Les meilleures pratiques pour surmonter ce problème comprennent une intervention manuelle et une politique de planification ad-hoc , qui est sujette aux erreurs et qui est difficile à adapter aux changements. Dans cette thèse, nous nous concentrons sur la planification basée sur la taille pour les systèmes DISC. La principale contribution de ce travail est le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur préemptif basé sur la taille qui tient en considération le vieillissement, ayant comme objectifs de fournir l’équité et des temps de réponse réduits. Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne sont pas connus a priori, donc, HFSP comprends un module d’estimation de taille, qui calcule une approximation et qui affine cette estimation au fur et a mesure du progrès d’un job. Nous démontrons que l’impact des erreurs d’estimation sur les politiques fondées sur la taille n’est pas significatif. Pour cette raison, et en vertu d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats expérimentaux démontrent que, dans un véritable déploiement Hadoop avec des charges de travail réalistes, HFSP est plus performant que les politiques de scheduling existantes, a la fois en terme de temps de réponse et d’équité. En outre, HFSP maintiens ses bonnes performances même lorsque le cluster de calcul est lourdement chargé, car il focalises les ressources sur des jobs ayant priorité. HFSP est une politique préventive: la préemption dans un système DISC peut être mis en œuvre avec des techniques différentes. Les approches actuellement disponibles dans Hadoop ont des lacunes qui ont une incidence sur les performances du système. Par conséquence, nous avons mis en œuvre une nouvelle technique de préemption, appelé suspension, qui exploite le système d’exploitation pour effectuer la préemption d’une manière qui garantie une faible latence sans pénaliser l’avancement des jobs a faible priorité. The past decade have seen the rise of data-intensive scalable computing (DISC) systems, such as Hadoop, and the consequent demand for scheduling policies to manage their resources, so that they can provide quick response times as well as fairness. Schedulers for DISC systems are usually focused on the fairness, without optimizing the response times. The best practices to overcome this problem include a manual and ad-hoc control of the scheduling policy, which is error-prone and difficult to adapt to changes. In this thesis we focus on size-based scheduling for DISC systems. The main contribution of this work is the Hadoop Fair Sojourn Protocol (HFSP) scheduler, a size-based preemptive scheduler with aging; it provides fairness and achieves reduced response times thanks to its size-based nature. In DISC systems, job sizes are not known a-priori: therefore, HFSP includes a job size estimation module, which computes approximated job sizes and refines these estimations as jobs progress. We show that the impact of estimation errors on the size-based policies is not signifi- cant, under conditions which are verified in a system such as Hadoop. Because of this, and by virtue of being designed around the idea of working with estimated sizes, HFSP is largely tolerant to job size estimation errors. Our experimental results show that, in a real Hadoop deployment and with realistic workloads, HFSP performs better than the built-in scheduling policies, achieving both fairness and small mean response time. Moreover, HFSP maintains its good performance even when the cluster is heavily loaded, by focusing the resources to few selected jobs with the smallest size. HFSP is a preemptive policy: preemption in a DISC system can be implemented with different techniques. Approaches currently available in Hadoop have shortcomings that impact on the system performance. Therefore, we have implemented a new preemption technique, called suspension, that exploits the operating system primitives to implement preemption in a way that guarantees low latency without penalizing low-priority jobs.</description><language>eng ; fre</language><subject>Distributed system ; MapReduce ; Planification des tâches par taille ; Size-based job scheduling ; Système distribué</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,311,780,885,26980</link.rule.ids><linktorsrc>$$Uhttps://www.theses.fr/2014ENST0048/document$$EView_record_in_ABES$$FView_record_in_$$GABES$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pastorelli, Mario</creatorcontrib><title>Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems</title><description>La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers pour les systèmes de DISC sont axées sur l’équité, sans optimiser les temps de réponse. Les meilleures pratiques pour surmonter ce problème comprennent une intervention manuelle et une politique de planification ad-hoc , qui est sujette aux erreurs et qui est difficile à adapter aux changements. Dans cette thèse, nous nous concentrons sur la planification basée sur la taille pour les systèmes DISC. La principale contribution de ce travail est le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur préemptif basé sur la taille qui tient en considération le vieillissement, ayant comme objectifs de fournir l’équité et des temps de réponse réduits. Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne sont pas connus a priori, donc, HFSP comprends un module d’estimation de taille, qui calcule une approximation et qui affine cette estimation au fur et a mesure du progrès d’un job. Nous démontrons que l’impact des erreurs d’estimation sur les politiques fondées sur la taille n’est pas significatif. Pour cette raison, et en vertu d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats expérimentaux démontrent que, dans un véritable déploiement Hadoop avec des charges de travail réalistes, HFSP est plus performant que les politiques de scheduling existantes, a la fois en terme de temps de réponse et d’équité. En outre, HFSP maintiens ses bonnes performances même lorsque le cluster de calcul est lourdement chargé, car il focalises les ressources sur des jobs ayant priorité. HFSP est une politique préventive: la préemption dans un système DISC peut être mis en œuvre avec des techniques différentes. Les approches actuellement disponibles dans Hadoop ont des lacunes qui ont une incidence sur les performances du système. Par conséquence, nous avons mis en œuvre une nouvelle technique de préemption, appelé suspension, qui exploite le système d’exploitation pour effectuer la préemption d’une manière qui garantie une faible latence sans pénaliser l’avancement des jobs a faible priorité. The past decade have seen the rise of data-intensive scalable computing (DISC) systems, such as Hadoop, and the consequent demand for scheduling policies to manage their resources, so that they can provide quick response times as well as fairness. Schedulers for DISC systems are usually focused on the fairness, without optimizing the response times. The best practices to overcome this problem include a manual and ad-hoc control of the scheduling policy, which is error-prone and difficult to adapt to changes. In this thesis we focus on size-based scheduling for DISC systems. The main contribution of this work is the Hadoop Fair Sojourn Protocol (HFSP) scheduler, a size-based preemptive scheduler with aging; it provides fairness and achieves reduced response times thanks to its size-based nature. In DISC systems, job sizes are not known a-priori: therefore, HFSP includes a job size estimation module, which computes approximated job sizes and refines these estimations as jobs progress. We show that the impact of estimation errors on the size-based policies is not signifi- cant, under conditions which are verified in a system such as Hadoop. Because of this, and by virtue of being designed around the idea of working with estimated sizes, HFSP is largely tolerant to job size estimation errors. Our experimental results show that, in a real Hadoop deployment and with realistic workloads, HFSP performs better than the built-in scheduling policies, achieving both fairness and small mean response time. Moreover, HFSP maintains its good performance even when the cluster is heavily loaded, by focusing the resources to few selected jobs with the smallest size. HFSP is a preemptive policy: preemption in a DISC system can be implemented with different techniques. Approaches currently available in Hadoop have shortcomings that impact on the system performance. Therefore, we have implemented a new preemption technique, called suspension, that exploits the operating system primitives to implement preemption in a way that guarantees low latency without penalizing low-priority jobs.</description><subject>Distributed system</subject><subject>MapReduce</subject><subject>Planification des tâches par taille</subject><subject>Size-based job scheduling</subject><subject>Système distribué</subject><fulltext>true</fulltext><rsrctype>dissertation</rsrctype><creationdate>2014</creationdate><recordtype>dissertation</recordtype><sourceid>RS3</sourceid><recordid>eNotjElOAzEURHuTBQqcAV-gJU8d20sUwiBFsKD30f8ewMhxt_KdBUfiHFyMRmFTTyW9qquu3mfyeS65RmII9PO9kM4nVoA1yKVENk-XOheoOWUPLU-VhcX7nJBYgPoXDfpcW6yUEyMPBXCZ-uk4n1uu74y-qMUjXXerBIXizT_X3fiwG7dP_f718Xl7t-_BcttL5wbrkIM2Fj1wkVyICuXGCIVGuCjFECxuTEpSqwECBhnABglGoxJWrbvbyy1gpEP7iLRAcqF3L28j59qqX81bT38</recordid><startdate>20140718</startdate><enddate>20140718</enddate><creator>Pastorelli, Mario</creator><scope>AOWWY</scope><scope>RS3</scope><scope>~IT</scope></search><sort><creationdate>20140718</creationdate><title>Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems</title><author>Pastorelli, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a808-299589b0a478bca01f9de3b26713b719e215d8b67ff2435adbd2da8d2a74b3183</frbrgroupid><rsrctype>dissertations</rsrctype><prefilter>dissertations</prefilter><language>eng ; fre</language><creationdate>2014</creationdate><topic>Distributed system</topic><topic>MapReduce</topic><topic>Planification des tâches par taille</topic><topic>Size-based job scheduling</topic><topic>Système distribué</topic><toplevel>online_resources</toplevel><creatorcontrib>Pastorelli, Mario</creatorcontrib><collection>Theses.fr (Open Access)</collection><collection>Theses.fr</collection><collection>Thèses.fr</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pastorelli, Mario</au><format>dissertation</format><genre>dissertation</genre><ristype>THES</ristype><btitle>Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems</btitle><date>2014-07-18</date><risdate>2014</risdate><abstract>La dernière décennie a vu l’émergence de systèmes parallèles pour l’analyse de grosse quantités de données (DISC) , tels que Hadoop, et la demande qui en résulte pour les politiques de gestion des ressources, pouvant fournir des temps de réponse rapides ainsi qu’équité. Actuellement, les schedulers pour les systèmes de DISC sont axées sur l’équité, sans optimiser les temps de réponse. Les meilleures pratiques pour surmonter ce problème comprennent une intervention manuelle et une politique de planification ad-hoc , qui est sujette aux erreurs et qui est difficile à adapter aux changements. Dans cette thèse, nous nous concentrons sur la planification basée sur la taille pour les systèmes DISC. La principale contribution de ce travail est le scheduler dit Hadoop Fair Sojourn Protocol (HFSP), un ordonnanceur préemptif basé sur la taille qui tient en considération le vieillissement, ayant comme objectifs de fournir l’équité et des temps de réponse réduits. Hélas, dans les systèmes DISC, les tailles des job d’analyse de données ne sont pas connus a priori, donc, HFSP comprends un module d’estimation de taille, qui calcule une approximation et qui affine cette estimation au fur et a mesure du progrès d’un job. Nous démontrons que l’impact des erreurs d’estimation sur les politiques fondées sur la taille n’est pas significatif. Pour cette raison, et en vertu d’être conçu autour de l’idée de travailler avec des tailles estimées, HFSP est tolérant aux erreurs d’estimation de la taille des jobs. Nos résultats expérimentaux démontrent que, dans un véritable déploiement Hadoop avec des charges de travail réalistes, HFSP est plus performant que les politiques de scheduling existantes, a la fois en terme de temps de réponse et d’équité. En outre, HFSP maintiens ses bonnes performances même lorsque le cluster de calcul est lourdement chargé, car il focalises les ressources sur des jobs ayant priorité. HFSP est une politique préventive: la préemption dans un système DISC peut être mis en œuvre avec des techniques différentes. Les approches actuellement disponibles dans Hadoop ont des lacunes qui ont une incidence sur les performances du système. Par conséquence, nous avons mis en œuvre une nouvelle technique de préemption, appelé suspension, qui exploite le système d’exploitation pour effectuer la préemption d’une manière qui garantie une faible latence sans pénaliser l’avancement des jobs a faible priorité. The past decade have seen the rise of data-intensive scalable computing (DISC) systems, such as Hadoop, and the consequent demand for scheduling policies to manage their resources, so that they can provide quick response times as well as fairness. Schedulers for DISC systems are usually focused on the fairness, without optimizing the response times. The best practices to overcome this problem include a manual and ad-hoc control of the scheduling policy, which is error-prone and difficult to adapt to changes. In this thesis we focus on size-based scheduling for DISC systems. The main contribution of this work is the Hadoop Fair Sojourn Protocol (HFSP) scheduler, a size-based preemptive scheduler with aging; it provides fairness and achieves reduced response times thanks to its size-based nature. In DISC systems, job sizes are not known a-priori: therefore, HFSP includes a job size estimation module, which computes approximated job sizes and refines these estimations as jobs progress. We show that the impact of estimation errors on the size-based policies is not signifi- cant, under conditions which are verified in a system such as Hadoop. Because of this, and by virtue of being designed around the idea of working with estimated sizes, HFSP is largely tolerant to job size estimation errors. Our experimental results show that, in a real Hadoop deployment and with realistic workloads, HFSP performs better than the built-in scheduling policies, achieving both fairness and small mean response time. Moreover, HFSP maintains its good performance even when the cluster is heavily loaded, by focusing the resources to few selected jobs with the smallest size. HFSP is a preemptive policy: preemption in a DISC system can be implemented with different techniques. Approaches currently available in Hadoop have shortcomings that impact on the system performance. Therefore, we have implemented a new preemption technique, called suspension, that exploits the operating system primitives to implement preemption in a way that guarantees low latency without penalizing low-priority jobs.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre
recordid cdi_abes_theses_2014ENST0048
source Theses.fr
subjects Distributed system
MapReduce
Planification des tâches par taille
Size-based job scheduling
Système distribué
title Disciplines basées sur la taille pour la planification des jobs dans data-intensif scalable computing systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-abes_RS3&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft.genre=dissertation&rft.btitle=Disciplines%20bas%C3%A9es%20sur%20la%20taille%20pour%20la%20planification%20des%20jobs%20dans%20data-intensif%20scalable%20computing%20systems&rft.au=Pastorelli,%20Mario&rft.date=2014-07-18&rft_id=info:doi/&rft_dat=%3Cabes_RS3%3E2014ENST0048%3C/abes_RS3%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true